TNF-α-Induced Optic Nerve Degeneration and Nuclear Factor-κB p65

2006 ◽  
Vol 47 (4) ◽  
pp. 1448 ◽  
Author(s):  
Yasushi Kitaoka ◽  
Yuka Kitaoka ◽  
Jacky M. K. Kwong ◽  
Fred N. Ross-Cisneros ◽  
Jiantao Wang ◽  
...  
2000 ◽  
Vol 279 (3) ◽  
pp. H939-H945 ◽  
Author(s):  
Shareef Mustapha ◽  
Alla Kirshner ◽  
Danielle De Moissac ◽  
Lorrie A. Kirshenbaum

Nuclear factor-κB (NF-κB) is a ubiquitously expressed cellular factor regulated by the cytoplasmic factor inhibitor protein κBα (IκBα). Activation of NF-κB by cytokines, including tumor necrosis factor-α (TNF-α), requires the phosphorylation and degradation of IκBα. An anti-apoptotic role for NF-κB has recently been suggested. In the present study, we ascertained whether death-promoting signals and apoptosis mediated by TNF-α are suppressed by NF-κB in postnatal ventricular myocytes. Stimulation of myocytes with TNF-α resulted in a 12.1-fold increase ( P < 0.01) in NF-κB-dependent gene transcription and DNA binding compared with controls. This was accompanied by a corresponding increase in the NF-κB target protein A20 as determined by Western blot analysis. Vital staining revealed that TNF-α was not cytotoxic to myocytes and did not provoke apoptosis. Adenovirus-mediated delivery of a nonphosphorylatable form of IκBα to inactivate NF-κB prevented TNF-α-stimulated NF-κB-dependent gene transcription and nuclear NF-κB DNA binding. Importantly, myocytes stimulated with TNF-α and defective for NF-κB activation resulted in a 2.2-fold increase ( P < 0.001) in apoptosis. To our knowledge, the data provide the first indication that a functional NF-κB signaling pathway is crucial for suppressing death-promoting signals mediated by TNF-α in ventricular myocytes.


2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Juliane Matlach ◽  
Thea Zindel ◽  
Yasmina Amraoui ◽  
Laila Arash-Kaps ◽  
Julia B. Hennermann ◽  
...  

2021 ◽  
pp. 105483
Author(s):  
Hélène Cwerman-Thibault ◽  
Christophe Lechauve ◽  
Vassilissa Malko-Baverel ◽  
Sébastien Augustin ◽  
Gwendoline Le Guilloux ◽  
...  

2001 ◽  
Vol 152 (4) ◽  
pp. 753-764 ◽  
Author(s):  
Nguyen Truc Bui ◽  
Antonia Livolsi ◽  
Jean-Francois Peyron ◽  
Jochen H.M. Prehn

NGF has been shown to support neuron survival by activating the transcription factor nuclear factor-κB (NFκB). We investigated the effect of NGF on the expression of Bcl-xL, an anti–apoptotic Bcl-2 family protein. Treatment of rat pheochromocytoma PC12 cells, human neuroblastoma SH-SY5Y cells, or primary rat hippocampal neurons with NGF (0.1–10 ng/ml) increased the expression of bcl-xL mRNA and protein. Reporter gene analysis revealed a significant increase in NFκB activity after treatment with NGF that was associated with increased nuclear translocation of the active NFκB p65 subunit. NGF-induced NFκB activity and Bcl-xL expression were inhibited in cells overexpressing the NFκB inhibitor, IκBα. Unlike tumor necrosis factor-α (TNF-α), however, NGF-induced NFκB activation occurred without significant degradation of IκBs determined by Western blot analysis and time-lapse imaging of neurons expressing green fluorescent protein–tagged IκBα. Moreover, in contrast to TNF-α, NGF failed to phosphorylate IκBα at serine residue 32, but instead caused significant tyrosine phosphorylation. Overexpression of a Y42F mutant of IκBα potently suppressed NFG-, but not TNF-α–induced NFκB activation. Conversely, overexpression of a dominant negative mutant of TNF receptor-associated factor-6 blocked TNF-α–, but not NGF-induced NFκB activation. We conclude that NGF and TNF-α induce different signaling pathways in neurons to activate NFκB and bcl-x gene expression.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 856
Author(s):  
Eui-Jeong Han ◽  
Ilekuttige Priyan Shanura Fernando ◽  
Hyun-Soo Kim ◽  
Dae-Sung Lee ◽  
Areum Kim ◽  
...  

The present study evaluated the effects of (–)-loliolide isolated from Sargassum horneri (S. horneri) against oxidative stress and inflammation, and its biological mechanism in interferon (IFN)-γ/tumor necrosis factor (TNF)-α-stimulated HaCaT keratinocytes. The results showed that (–)-loliolide improved the cell viability by reducing the production of intracellular reactive oxygen species (ROS) in IFN-γ/TNF-α-stimulated HaCaT keratinocytes. In addition, (–)-loliolide effectively decreased the expression of inflammatory cytokines (interleukin (IL)-4 IL-6, IL-13, IFN-γ and TNF-α) and chemokines (CCL11 (Eotaxin), macrophage-derived chemokine (MDC), regulated on activation, normal T cell expressed and secreted (RANTES), and thymus and activation-regulated chemokine (TARC)), by downregulating the expression of epidermal-derived initial cytokines (IL-25, IL-33 and thymic stromal lymphopoietin (TSLP)). Furthermore, (–)-loliolide suppressed the activation of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling, whereas it activated nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Interestingly, the cytoprotective effects of (–)-loliolide against IFN-γ/TNF-α stimulation were significantly blocked upon inhibition of HO-1. Taken together, these results suggest that (–)-loliolide effectively suppressed the oxidative stress and inflammation by activating the Nrf2/HO-1 signaling in IFN-γ/TNF-α-stimulated HaCaT keratinocytes.


1998 ◽  
Vol 275 (2) ◽  
pp. L311-L321 ◽  
Author(s):  
Kathleen J. Haley ◽  
Kirit Patidar ◽  
Fan Zhang ◽  
Rodica L. Emanuel ◽  
Mary E. Sunday

We studied tumor necrosis factor (TNF)-α as a candidate cytokine to promote neuroendocrine cell differentiation in a nitrosamine-hyperoxia hamster lung injury model. Differential screening identified expression of the genes modulated by TNF-α preceding neuroendocrine cell differentiation. Undifferentiated small cell lung carcinoma (SCLC) cell lines NCI-H82 and NCI-H526 were treated with TNF-α for up to 2 wk. Both cell lines demonstrated rapid induction of gastrin-releasing peptide (GRP) mRNA; H82 cells also expressed aromatic-l-amino acid decarboxylase mRNA within 5 min after TNF-α was added. Nuclear translocation of nuclear factor-κB immunostaining occurred with TNF-α treatment, suggesting nuclear factor-κB involvement in the induction of GRP and/or aromatic-l-amino acid decarboxylase gene expression. We also demonstrated dense core neurosecretory granules and immunostaining for proGRP and neural cell adhesion molecule in H82 cells after 7–14 days of TNF-α treatment. We conclude that TNF-α can induce phenotypic features of neuroendocrine cell differentiation in SCLC cell lines. Similar effects of TNF-α in vivo may contribute to the neuroendocrine cell differentiation/hyperplasia associated with many chronic inflammatory pulmonary diseases.


BioChem ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 107-121
Author(s):  
Nghia Trong Vo ◽  
Eiichi Kusagawa ◽  
Kaori Nakano ◽  
Chihiro Moriwaki ◽  
Yasunobu Miyake ◽  
...  

Ostruthin (6-geranyl-7-hydroxycoumarin) is one of the constituents isolated from Paramignya trimera and has been classified as a simple coumarin. We recently reported the synthesis of alkyl triphenylphosphonium (TPP) derivatives from ostruthin and evaluated their anticancer activities. In the present study, we demonstrated that alkyl TPP ostruthin derivatives inhibited the up-regulation of cell-surface intercellular adhesion molecule-1 (ICAM-1) in human lung adenocarcinoma A549 cells stimulated with tumor necrosis factor-α (TNF-α) without affecting cell viability, while ostruthin itself exerted cytotoxicity against A549 cells. The heptyl TPP ostruthin derivative (termed OS8) attenuated the up-regulation of ICAM-1 mRNA expression at concentrations higher than 40 µM in TNF-α-stimulated A549 cells. OS8 inhibited TNF-α-induced nuclear factor κB (NF-κB)-responsive luciferase reporter activity at concentrations higher than 40 µM, but did not affect the translocation of the NF-κB subunit RelA in response to the TNF-α stimulation at concentrations up to 100 µM. A chromatin immunoprecipitation assay showed that OS8 at 100 µM prevented the binding of RelA to the ICAM-1 promoter. We also showed that OS8 at 100 µM inhibited the TNF-α-induced phosphorylation of RelA at Ser 536. Moreover, the TNF-α-induced phosphorylation of an inhibitor of NF-κB α and extracellular signal-regulated kinase was reduced by OS8. These results indicate that OS8 has potential as an anti-inflammatory agent that targets the NF-κB signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document