scholarly journals Microphysics of Raindrop Size Spectra: Tropical Continental and Maritime Storms

2007 ◽  
Vol 46 (11) ◽  
pp. 1777-1791 ◽  
Author(s):  
Carlton W. Ulbrich ◽  
David Atlas

Abstract This work uses raindrop size spectra measured at the surface in tropical continental storms to determine the associated parameters of the best-fit gamma distributions. The physical processes responsible for those parameters and their relations to the measurable radar reflectivity Z and differential reflectivity ZDR are then explored. So too are their relations to quantitative measurements of rain. Comparison is then made with corresponding features previously reported in tropical maritime regimes. The storms observed in Brazil and Arecibo, Puerto Rico, have been divided into convective (C), transition (T), and stratiform (S) segments. The raindrop size distribution (DSD) parameters are clearly defined on a gamma parameter diagram (GPD) that shows 1) how median volume drop size D0 increases from S to T to C segments of the rain while 2) the range of the spectrum breadth parameter μ increases, and the range of the slope parameter Λ decreases in the same sequence of S to C. Drop growth occurs predominantly below the 0°C level by collision, coalescence, and breakup in the C rains. The median volume diameter D0 grows as more of the water is concentrated near that size and so the DSD narrows; that is, both μ and Λ increase. In both maritime and continental storms the DSD in the convective portion of the storm approaches equilibrium. The coefficient A in the Z = ARb relation increases with D0 while the exponent b approaches unity. The D0 and A pair increase with, and appear to be determined largely by, the updraft strength, thus providing a possible means of determining the appropriate algorithms for rainfall measurement. Although the small drop number samples measured by the surface disdrometer relative to the large volumes sampled by a radar tend to truncate the DSD at both small and large drop sizes, narrow distributions with μ = 5 to 12 cannot be attributed to such an effect. Such narrow DSDs accord with common experience of monodispersed large drops at the beginning of a convective storm. There is also remarkable agreement of the surface-based observations of ZDR–Z–D0 with the time–space variations from C to T to S rain types observed by radar in England and elsewhere. Because the C region of a storm often accounts for a major share of the rain accumulation despite its shorter duration, it is particularly important to measure that region more accurately. There are distinctive clusters of the generalized number parameter NW versus D0 between maritime and continental storms. Methods for remote sensing and parameterization must partition the rainstorms into convective, transition, and stratiform segments.

2014 ◽  
Vol 31 (2) ◽  
pp. 387-403 ◽  
Author(s):  
Eiichi Yoshikawa ◽  
V. Chandrasekar ◽  
Tomoo Ushio

Abstract A raindrop size distribution (DSD) retrieval method for a dual-polarization radar at attenuating frequency is proposed. The proposed method is developed such that the range profiles of the gamma DSD parameters, an intercept parameter Nw (mm−1 m−3), and a median volume diameter D0 (mm) can be estimated to match the dual-polarization measurements, measured equivalent reflectivity at horizontal polarization ZHm, measured differential reflectivity ZDRm, and measured differential propagation phase ΦDPm, where the forward scattering and backscattering are formulated simultaneously to avoid the two-step process of attenuation correction and DSD retrieval. Additionally, the proposed method does not have the attenuation-correction errors accumulated along range that traditional forward and backward processes have, since the range profiles of the DSD parameters are optimized in a radar beam simultaneously. In the simulation, the proposed algorithm showed fairly good accuracies for retrievals Nw and D0. Errors with the different axis ratio models or calibration biases in ZHm and ZDRm, which contaminate assumptions of the proposed method in real observational data, were also evaluated. Under a Gaussian fluctuation model, the estimation process, known as an iterative maximum-likelihood estimator, derives the best estimation in the statistical fluctuation conditions. This scheme could be extended to duplicative observation such as a radar network environment.


2008 ◽  
Vol 47 (7) ◽  
pp. 1929-1939 ◽  
Author(s):  
Carlton W. Ulbrich ◽  
David Atlas

Abstract Raindrop size distributions (DSDs) for tropical convective storms are used to examine the relationships between the parameters of a gamma DSD, with special emphasis on their variation with the stage of the storm. Such a distinction has rarely been made before. Several storms from a variety of tropical locations are divided into storm stages according to the temporal dependence of their reflectivity factor Z, rainfall rate R, and median volume diameter D0. In most cases it is found that the DSD parameter D0 is approximately constant in time during the convective, or C, stage, which leads to a Z–R relation of the form Z = AR, that is, a linear relationship between Z and R. This finding implies the existence of equilibrium DSDs during the C stage. The convective stage is sometimes marked by pulsations in draft strength so that D0, R, and Z and associated values of the shape parameter μ decrease in a quasi-transition stage before increasing once more. Theoretical relations between the differential reflectivity ZDR and the ratio Z/R as functions of the DSD parameter μ are derived by assuming a gamma DSD and an accurate raindrop fall speed law. It is found that data derived from disdrometer observations lie along a μ = 5 isopleth for tropical continental C stages (Puerto Rico and Brazil) and along a μ = 12 isopleth for tropical maritime C stages [Tropical Ocean and Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE)]. Small values of μ that occur in the weak updraft intervals do not impact the rainfall measurements because they correspond to relatively small R. The latter features imply that the measurement of rainfall for the convective stages can be performed with standard polarimetry involving only two measurables rather than three, provided knowledge of μ is available a priori. A new rain parameter diagram is presented in which isopleths of the generalized number concentration and D0 are superimposed on the Z–R plot. It is proposed that it is possible to estimate D0 from climatological and observable storm structural features, which, with Z, provide estimates of R. Such an approach is necessary for use with conventional radars until polarimetric radars are more widely available.


2013 ◽  
Vol 52 (1) ◽  
pp. 169-185 ◽  
Author(s):  
Qing Cao ◽  
Guifu Zhang ◽  
Ming Xue

AbstractThis study presents a two-dimensional variational approach to retrieving raindrop size distributions (DSDs) from polarimetric radar data in the presence of attenuation. A two-parameter DSD model, the constrained-gamma model, is used to represent rain DSDs. Three polarimetric radar measurements—reflectivity ZH, differential reflectivity ZDR, and specific differential phase KDP—are optimally used to correct for the attenuation and retrieve DSDs by taking into account measurement error effects. Retrieval results with simulated data demonstrate that the proposed algorithm performs well. Applications to real data collected by the X-band Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) radars and the C-band University of Oklahoma–Polarimetric Radar for Innovations in Meteorology and Engineering (OU-PRIME) also demonstrate the efficacy of this approach.


2006 ◽  
Vol 63 (4) ◽  
pp. 1273-1290 ◽  
Author(s):  
Guifu Zhang ◽  
Juanzhen Sun ◽  
Edward A. Brandes

Abstract Disdrometer observations indicate that the raindrop size distribution (DSD) can be represented by a constrained-gamma (CG) distribution model. The model is used to retrieve DSDs from polarization radar measurements of reflectivity and differential reflectivity and to characterize rain microphysics and physical processes such as evaporation, accretion, and precipitation. The CG model parameterization is simplified to a single parameter for application in single-moment numerical models. This simplified parameterization is applied in the Variational Doppler Radar Analysis System (VDRAS) using Kessler-type parameterizations for model initialization and forecasting. Results are compared to those for the Marshall–Palmer (MP) DSD model. It is found that the simplified CG model parameterization better preserves the stratiform rain and produces better forecasts than the MP model parameterization.


2019 ◽  
Vol 11 (12) ◽  
pp. 1479 ◽  
Author(s):  
Ji ◽  
Chen ◽  
Li ◽  
Chen ◽  
Xiao ◽  
...  

Fourteen-month precipitation measurements from a second-generation PARSIVEL disdrometer deployed in Beijing, northern China, were analyzed to investigate the microphysical structure of raindrop size distribution and its implications on polarimetric radar applications. Rainfall types are classified and analyzed in the domain of median volume diameter D0 and the normalized intercept parameter Nw. The separation line between convective and stratiform rain is almost equivalent to rain rate at 8.6 mm h–1 and radar reflectivity at 36.8 dBZ. Convective rain in Beijing shows distinct seasonal variations in log10Nw–D0 domain. X-band dual-polarization variables are simulated using the T-matrix method to derive radar-based quantitative precipitation estimation (QPE) estimators, and rainfall products at hourly scale are evaluated for four radar QPE estimators using collocated but independent rain gauge observations. This study also combines the advantages of individual estimators based on the thresholds on polarimetric variables. Results show that the blended QPE estimator has better performance than others. The rainfall microphysical analysis presented in this study is expected to facilitate the development of a high-resolution X-band radar network for urban QPE applications.


2020 ◽  
Vol 37 (2) ◽  
pp. 229-242 ◽  
Author(s):  
Robert Conrick ◽  
Joseph P. Zagrodnik ◽  
Clifford F. Mass

AbstractRadar retrievals of drop size distribution (DSD) parameters are developed and evaluated over the mountainous Olympic Peninsula of Washington State. The observations used to develop retrievals were collected during the 2015/16 Olympic Mountain Experiment (OLYMPEX) and included the NASA S-band dual-polarimetric (NPOL) radar and a collection of second-generation Particle Size and Velocity (PARSIVEL2) disdrometers over the windward slopes of the barrier. Nonlinear and random forest regressions are applied to the PARSIVEL2 data to develop retrievals for median volume diameter, liquid water content, and rain rate. Improvement in DSD retrieval accuracy, defined by the mean error of the retrieval relative to PARSIVEL2 observations, was achieved when using the random forest model when compared with nonlinear regression. Evaluation of disdrometer observations and the retrievals from NPOL indicate that the radar retrievals can accurately reproduce observed DSDs in this region, including the common wintertime regime of small but numerous raindrops that is important there. NPOL retrievals during the OLYMPEX period are further evaluated using two-dimensional video disdrometers (2DVD) and vertically pointing Micro Rain Radars. Results indicate that radar retrievals using random forests may be skillful in capturing DSD characteristics in the lowest portions of the atmosphere.


2018 ◽  
Vol 33 (5) ◽  
pp. 1477-1495 ◽  
Author(s):  
Darrel M. Kingfield ◽  
Joseph C. Picca

Abstract Raindrop size sorting is a ubiquitous microphysical occurrence in precipitating systems. Owing to the greater terminal fall speed of larger particles, a raindrop’s fall trajectory can be sensitive to its size, and strong air currents (e.g., a convective updraft) can enhance this sensitivity. Indeed, observational and numerical model simulation studies have confirmed these effects on raindrop size distributions near convective updrafts. One striking example is the lofting of liquid drops and partially frozen hydrometeors above the environmental 0°C level, resulting in a small columnar region of positive differential reflectivity ZDR in polarimetric radar data, known as the ZDR column. This signature can serve as a proxy for updraft location and strength, offering operational forecasters a tool for monitoring convective trends. Beneath the 0°C level, where WSR-88D spatiotemporal resolution is highest, anomalously high ZDR collocated with lower reflectivity factor at horizontal polarization ZH is often observed within and beneath convective updrafts. Here, size sorting creates a deficit in small drops, while relatively large drops and melting hydrometeors are present in low concentrations. As such, this unique raindrop size distribution and its related polarimetric signature can indicate updraft location sooner and more frequently than the detection of a ZDR column. This paper introduces a novel algorithm that capitalizes on the improved radar coverage at lower levels and automates the detection of this size sorting signature. At the algorithm core, unique ZH–ZDR relationships are created for each radar elevation scan, and positive ZDR outliers (often indicative of size sorting) are identified. Algorithm design, examples, performance, strengths and limitations, and future development are discussed.


2020 ◽  
Vol 59 (3) ◽  
pp. 517-533 ◽  
Author(s):  
Ali Tokay ◽  
Leo Pio D’Adderio ◽  
David A. Marks ◽  
Jason L. Pippitt ◽  
David B. Wolff ◽  
...  

AbstractThe ground-based-radar-derived raindrop size distribution (DSD) parameters—mass-weighted drop diameter Dmass and normalized intercept parameter NW—are the sole resource for direct validation of the National Aeronautics and Space Administration (NASA) Global Precipitation Measurement (GPM) mission Core Observatory satellite-based retrieved DSD. Both Dmass and NW are obtained from radar-measured reflectivity ZH and differential reflectivity ZDR through empirical relationships. This study uses existing relationships that were determined for the GPM ground validation (GV) program and directly compares the NASA S-band polarimetric radar (NPOL) observables of ZH and ZDR and derived Dmass and NW with those calculated by two-dimensional video disdrometer (2DVD). The joint NPOL and 2DVD datasets were acquired during three GPM GV field campaigns conducted in eastern Iowa, southern Appalachia, and western Washington State. The comparative study quantifies the level of agreement for ZH, ZDR, Dmass, and log(NW) at an optimum distance (15–40 km) from the radar as well as at distances greater than 60 km from radar and over mountainous terrain. Interestingly, roughly 10%–15% of the NPOL ZH–ZDR pairs were well outside the envelope of 2DVD-estimated ZH–ZDR pairs. The exclusion of these pairs improved the comparisons noticeably.


2011 ◽  
Vol 50 (2) ◽  
pp. 296-310 ◽  
Author(s):  
Roger W. Johnson ◽  
Donna V. Kliche ◽  
Paul L. Smith

Abstract When fitting a raindrop size distribution using a gamma model from data collected by a disdrometer, some consideration needs to be given to the small drops that fail to be recorded (typical disdrometer minimum size thresholds being in the 0.3–0.5-mm range). To this end, a gamma estimation procedure using maximum likelihood estimation has recently been published. The current work adds another procedure that accounts for the left-truncation problem in the data; in particular, an L-moments procedure is developed. These two estimation procedures, along with a traditional method-of-moments procedure that also accounts for data truncation, are then compared via simulation of volume samples from known gamma drop size distributions. For the range of gamma distributions considered, the maximum likelihood and L-moments procedures—which perform comparably—are found to outperform the procedure of method-of-moments. As these three procedures do not yield simple estimates in closed form, salient details of the R statistical code used in the simulations are included.


Sign in / Sign up

Export Citation Format

Share Document