scholarly journals Large-Scale Atlantic Salinity Changes over the Last Half-Century: A Model–Observation Comparison

2008 ◽  
Vol 21 (8) ◽  
pp. 1698-1720 ◽  
Author(s):  
Anne Pardaens ◽  
Michael Vellinga ◽  
Peili Wu ◽  
Bruce Ingleby

Abstract Large-scale freshening of the northern Atlantic, and concurrent salinity increases in the low-latitude Atlantic upper layers, have been widely reported for the second half of the twentieth century. The role of anthropogenic and/or unforced variability processes in these changes, and the potential for the high-latitude freshening to slow the Atlantic meridional overturning circulation (MOC), have been the subject of debate. These issues are investigated by comparing observed and simulated changes, using the Third Hadley Centre Coupled Model (HadCM3). This analysis suggests that a substantial part of the observed trends could be related to multidecadal variability of the MOC. Using an SST-derived proxy for historical MOC changes, in conjunction with model internal variability relationships, suggests that much of the observed evolution of northern Atlantic freshwater content can be explained as being driven by unforced MOC variability. HadCM3 simulations with “external” historical time-varying forcings show anthropogenically forced increases in the main hydrological cycle over the Atlantic: an increase in net precipitation at high latitudes and in net evaporation in the subtropics. In the northern Atlantic the freshening from additional surface freshwater is counteracted by changes in ocean freshwater transport. A similar ocean compensation is absent at lower latitudes, where there is decreasing freshwater content. It is suggested that in the recent historical period this externally forced trend is likely to have led to anomalies exceeding the unforced variability range.

2018 ◽  
Author(s):  
Chuncheng Guo ◽  
Mats Bentsen ◽  
Ingo Bethke ◽  
Mehmet Ilicak ◽  
Jerry Tjiputra ◽  
...  

Abstract. A new computationally efficient version of the Norwegian Earth System Model (NorESM) is presented. This new version (here termed NorESM1-F) runs about 2.5 times faster (e.g. 90 model years per day on current hardware) than the version that contributed to the fifth phase of the Coupled Model Intercomparison project (CMIP5), i.e., NorESM1-M, and is therefore particularly suitable for multi-millennial paleoclimate and carbon cycle simulations or large ensemble simulations. The speedup is primarily a result of using a prescribed atmosphere aerosol chemistry and a tripolar ocean-sea ice horizontal grid configuration that allows an increase of the ocean-sea ice component time steps. Ocean biogeochemistry can be activated for fully coupled and semi-coupled carbon cycle applications. This paper describes the model and evaluates its performance using observations and NorESM1-M as benchmarks. The evaluation emphasises model stability, important large-scale features in the ocean and sea ice components, internal variability in the coupled system, and climate sensitivity. Simulation results from NorESM1-F in general agree well with observational estimates, and show evident improvements over NorESM1-M, for example, in the strength of the meridional overturning circulation and sea ice simulation, both important metrics in simulating past and future climates. Whereas NorESM1-M showed a slight global cool bias in the upper oceans, NorESM1-F exhibits a global warm bias. In general, however, NorESM1-F has more similarities than dissimilarities compared to NorESM1-M, and some biases and deficiencies known in NorESM1-M remain.


2019 ◽  
Vol 12 (1) ◽  
pp. 343-362 ◽  
Author(s):  
Chuncheng Guo ◽  
Mats Bentsen ◽  
Ingo Bethke ◽  
Mehmet Ilicak ◽  
Jerry Tjiputra ◽  
...  

Abstract. A new computationally efficient version of the Norwegian Earth System Model (NorESM) is presented. This new version (here termed NorESM1-F) runs about 2.5 times faster (e.g., 90 model years per day on current hardware) than the version that contributed to the fifth phase of the Coupled Model Intercomparison project (CMIP5), i.e., NorESM1-M, and is therefore particularly suitable for multimillennial paleoclimate and carbon cycle simulations or large ensemble simulations. The speed-up is primarily a result of using a prescribed atmosphere aerosol chemistry and a tripolar ocean–sea ice horizontal grid configuration that allows an increase of the ocean–sea ice component time steps. Ocean biogeochemistry can be activated for fully coupled and semi-coupled carbon cycle applications. This paper describes the model and evaluates its performance using observations and NorESM1-M as benchmarks. The evaluation emphasizes model stability, important large-scale features in the ocean and sea ice components, internal variability in the coupled system, and climate sensitivity. Simulation results from NorESM1-F in general agree well with observational estimates and show evident improvements over NorESM1-M, for example, in the strength of the meridional overturning circulation and sea ice simulation, both important metrics in simulating past and future climates. Whereas NorESM1-M showed a slight global cool bias in the upper oceans, NorESM1-F exhibits a global warm bias. In general, however, NorESM1-F has more similarities than dissimilarities compared to NorESM1-M, and some biases and deficiencies known in NorESM1-M remain.


2014 ◽  
Vol 27 (8) ◽  
pp. 2931-2947 ◽  
Author(s):  
Ed Hawkins ◽  
Buwen Dong ◽  
Jon Robson ◽  
Rowan Sutton ◽  
Doug Smith

Abstract Decadal climate predictions exhibit large biases, which are often subtracted and forgotten. However, understanding the causes of bias is essential to guide efforts to improve prediction systems, and may offer additional benefits. Here the origins of biases in decadal predictions are investigated, including whether analysis of these biases might provide useful information. The focus is especially on the lead-time-dependent bias tendency. A “toy” model of a prediction system is initially developed and used to show that there are several distinct contributions to bias tendency. Contributions from sampling of internal variability and a start-time-dependent forcing bias can be estimated and removed to obtain a much improved estimate of the true bias tendency, which can provide information about errors in the underlying model and/or errors in the specification of forcings. It is argued that the true bias tendency, not the total bias tendency, should be used to adjust decadal forecasts. The methods developed are applied to decadal hindcasts of global mean temperature made using the Hadley Centre Coupled Model, version 3 (HadCM3), climate model, and it is found that this model exhibits a small positive bias tendency in the ensemble mean. When considering different model versions, it is shown that the true bias tendency is very highly correlated with both the transient climate response (TCR) and non–greenhouse gas forcing trends, and can therefore be used to obtain observationally constrained estimates of these relevant physical quantities.


2021 ◽  
pp. 1-62
Author(s):  
Isla R. Simpson ◽  
Karen A. McKinnon ◽  
Frances V. Davenport ◽  
Martin Tingley ◽  
Flavio Lehner ◽  
...  

AbstractAn ‘emergent constraint’ (EC) is a statistical relationship, across a model ensemble, between a measurable aspect of the present day climate (the predictor) and an aspect of future projected climate change (the predictand). If such a relationship is robust and understood, it may provide constrained projections for the real world. Here, Coupled Model Intercomparison Project 6 (CMIP6) models are used to revisit several ECs that were proposed in prior model intercomparisons with two aims: (1) to assess whether these ECs survive the partial out-of-sample test of CMIP6 and (2) to more rigorously quantify the constrained projected change than previous studies. To achieve the latter, methods are proposed whereby uncertainties can be appropriately accounted for, including the influence of internal variability, uncertainty on the linear relationship, and the uncertainty associated with model structural differences, aside from those described by the EC. Both least squares regression and a Bayesian Hierarchical Model are used. Three ECs are assessed: (a) the relationship between Southern Hemisphere jet latitude and projected jet shift, which is found to be a robust and quantitatively useful constraint on future projections; (b) the relationship between stationary wave amplitude in the Pacific-North American sector and meridional wind changes over North America (with extensions to hydroclimate), which is found to be robust but improvements in the predictor in CMIP6 result in it no longer substantially constrains projected change in either circulation or hydroclimate; and (c) the relationship between ENSO teleconnections to California and California precipitation change, which does not appear to be robust when using historical ENSO teleconnections as the predictor.


2020 ◽  
Vol 33 (9) ◽  
pp. 3487-3509 ◽  
Author(s):  
Andrew R. Friedman ◽  
Gabriele C. Hegerl ◽  
Andrew P. Schurer ◽  
Shih-Yu Lee ◽  
Wenwen Kong ◽  
...  

AbstractThe sea surface temperature (SST) contrast between the Northern Hemisphere (NH) and Southern Hemisphere (SH) influences the location of the intertropical convergence zone (ITCZ) and the intensity of the monsoon systems. This study examines the contributions of external forcing and unforced internal variability to the interhemispheric SST contrast in HadSST3 and ERSSTv5 observations, and 10 models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) from 1881 to 2012. Using multimodel mean fingerprints, a significant influence of anthropogenic, but not natural, forcing is detected in the interhemispheric SST contrast, with the observed response larger than that of the model mean in ERSSTv5. The forced response consists of asymmetric NH–SH SST cooling from the mid-twentieth century to around 1980, followed by opposite NH–SH SST warming. The remaining best-estimate residual or unforced component is marked by NH–SH SST maxima in the 1930s and mid-1960s, and a rapid NH–SH SST decrease around 1970. Examination of decadal shifts in the observed interhemispheric SST contrast highlights the shift around 1970 as the most prominent from 1881 to 2012. Both NH and SH SST variability contributed to the shift, which appears not to be attributable to external forcings. Most models examined fail to capture such large-magnitude shifts in their control simulations, although some models with high interhemispheric SST variability are able to produce them. Large-magnitude shifts produced by the control simulations feature disparate spatial SST patterns, some of which are consistent with changes typically associated with the Atlantic meridional overturning circulation (AMOC).


2020 ◽  
Author(s):  
Isla Simpson ◽  
Fances Davenport ◽  
Abdullah Al Fahad ◽  
Flavio Lehner

<p>Accurate future projections of the climate system are hindered by a number of sources of uncertainty: forcing uncertainty, internal variability and model structural uncertainty. An ``Emergent constraint'' is a technique that has been devised to reduce projection uncertainties arising from the model structural component. It consists of a statistical relationship (across a model ensemble) between a model’s representation of some aspect of the present day climate and its future projected climate change. This relationship can then be used to imply the future projected change, given the observed value of that present-day aspect. However, in order for the emergent constraint to be considered robust it must: (a) be accompanied by a physical mechanism and (b) be robust to out-of-sample testing.</p><p> </p><p>In prior Coupled Model Intercomparison Projects (CMIP), in particular CMIP5, a number of emergent constraints on the large scale atmospheric circulation were proposed, with implications for regional hydroclimate change. These include: (1) a relationship between a model’s climatological jet latitude and its future projected poleward shift in the Southern Hemisphere; (2) a relationship between a model’s future projected wintertime circulation and hydroclimate change over North America and its climatological representation of stationary waves in the North Pacific; and (3) a relationship between a model’s future projected precipitation change over California and its representation of the relationship between ENSO and California precipitation. Constraints (2) and (3) actually imply opposite constraints on California precipitation changes for the real world, which speaks to the need for a deeper understanding of these emergent constraints and a comprehensive assessment of their robustness.</p><p> </p><p>While the CMIP6 archive does not represent a true ``out-of-sample’’ test of CMIP5 emergent constraints, it does provide us with a new dataset composed of new and/or more advanced models in which to assess their robustness. This presentation will review the proposed emergent constraints on the large-scale atmospheric circulation and assess whether or not they are robust across both the CMIP5 and CMIP6 ensembles. Their potential for constraining regional hydroclimate projections will also be discussed.</p><p> </p>


2009 ◽  
Vol 22 (14) ◽  
pp. 3993-4013 ◽  
Author(s):  
Guillaume Gastineau ◽  
Laurent Li ◽  
Hervé Le Treut

Abstract Sea surface temperature (SST) changes constitute a major indicator and driver of climate changes induced by greenhouse gas increases. The objective of the present study is to investigate the role played by the detailed structure of the SST change on the large-scale atmospheric circulation and the distribution of precipitation. For that purpose, simulations from the Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL-CM4) are used where the carbon dioxide (CO2) concentration is doubled. The response of IPSL-CM4 is characterized by the same robust mechanisms affecting the other coupled models in global warming simulations, that is, an increase of the hydrological cycle accompanied by a global weakening of the large-scale circulation. First, purely atmospheric simulations are performed to mimic the results of the coupled model. Then, specific simulations are set up to further study the underlying atmospheric mechanisms. These simulations use different prescribed SST anomalies, which correspond to a linear decomposition of the IPSL-CM4 SST changes in global, longitudinal, and latitudinal components. The simulation using a globally uniform increase of the SST is able to reproduce the modifications in the intensity of the hydrological cycle or in the mean upward mass flux, which also characterize the double CO2 simulation with the coupled model. But it is necessary (and largely sufficient) to also take into account the zonal-mean meridional structure of the SST changes to represent correctly the changes in the Hadley circulation strength or the zonal-mean precipitation changes simulated by the coupled model, even if these meridional changes by themselves do not change the mean thermodynamical state of the tropical atmosphere. The longitudinal SST anomalies of IPSL-CM4 also have an impact on the precipitation and large-scale tropical circulation and tend to introduce different changes over the Pacific and Atlantic Oceans. The longitudinal SST changes are demonstrated to have a smaller but opposite effect from that of the meridional anomalies on the Hadley cell circulations. Results indicate that the uncertainties in the simulated meridional patterns of the SST warming may have major consequences on the assessment of the changes of the Hadley circulation and zonal-mean precipitation in future climate projections.


2020 ◽  
Vol 33 (18) ◽  
pp. 7835-7858 ◽  
Author(s):  
Clara Deser ◽  
Adam S. Phillips ◽  
Isla R. Simpson ◽  
Nan Rosenbloom ◽  
Dani Coleman ◽  
...  

AbstractThe evolving roles of anthropogenic aerosols (AER) and greenhouse gases (GHG) in driving large-scale patterns of precipitation and SST trends during 1920–2080 are studied using a new set of “all-but-one-forcing” initial-condition large ensembles (LEs) with the Community Earth System Model version 1 (CESM1), which complement the original “all-forcing” CESM1 LE (ALL). The large number of ensemble members (15–20) in each of the new LEs enables regional impacts of AER and GHG to be isolated from the noise of the model’s internal variability. Our analysis approach, based on running 50-yr trends, accommodates geographical and temporal changes in patterns of forcing and response. AER are shown to be the primary driver of large-scale patterns of externally forced trends in ALL before the late 1970s, and GHG to dominate thereafter. The AER and GHG forced trends are spatially distinct except during the 1970s transition phase when aerosol changes are mainly confined to lower latitudes. The transition phase is also characterized by a relative minimum in the amplitude of forced trend patterns in ALL, due to a combination of reduced AER and partially offsetting effects of AER and GHG. Internal variability greatly limits the detectability of AER- and GHG-forced trend patterns in individual realizations based on pattern correlation metrics, especially during the historical period, highlighting the need for LEs. We estimate that <20% of the spatial variances of observed precipitation and SST trends are attributable to AER and GHG forcing, although model biases in patterns of forced response and signal-to-noise may affect this estimate.


2021 ◽  
Author(s):  
Sisi Chen ◽  
Xing Yuan

&lt;p&gt;Seasonal drought has a serious impact on nature and human society, especially during vegetation growing periods. As climate change alters terrestrial hydrological cycle significantly, it is imperative to assess drought changes and develop corresponding risk management measures for adaptation. According to a series of warming targets proposed by IPCC, researchers have focused on the response of regional droughts to global warming, but with inconsistent conclusions due to the large uncertainties in soil moisture simulation by the climate models, and the difficulty in representing the internal variability of climate system by using multi-model ensemble, etc. As compared with Coupled Model Intercomparison Project Phase 5 (CMIP5) models, the future projection of soil moisture based on the latest CMIP6 shows opposite trends over parts of China. Therefore, we project seasonal soil drought over China by using the superensemble that includes a set of CMIP5 and CMIP6 soil moisture data, high resolution land surface simulations driven by bias-corrected CMIP5 climate forcings, as wells large ensemble (LE) simulation data. We also investigate the influences from internal variability, and model uncertainties in responding to global warming at different levels.&lt;/p&gt;


2015 ◽  
Vol 11 (10) ◽  
pp. 1347-1360 ◽  
Author(s):  
S. C. Lewis ◽  
A. N. LeGrande

Abstract. Determining past changes in the amplitude, frequency and teleconnections of the El Niño-Southern Oscillation (ENSO) is important for understanding its potential sensitivity to future anthropogenic climate change. Palaeo-reconstructions from proxy records can provide long-term information of ENSO interactions with the background climatic state through time. However, it remains unclear how ENSO characteristics have changed on long timescales, and precisely which signals proxies record. Proxy interpretations are typically underpinned by the assumption of stationarity in relationships between local and remote climates, and often utilise archives from single locations located in the Pacific Ocean to reconstruct ENSO histories. Here, we investigate the long-term characteristics of ENSO and its teleconnections using the Last Millennium experiment of CMIP5 (Coupled Model Intercomparison Project phase 5; Taylor et al., 2012). We show that the relationship between ENSO conditions (NINO3.4) and local climates across the Pacific basin differs significantly for 100-year epochs defining the Last Millennium and the historical period 1906–2005. Furthermore, models demonstrate decadal- to centennial-scale modulation of ENSO behaviour during the Last Millennium. Overall, results suggest that the stability of teleconnections may be regionally dependent and that proxy climate records may reveal complex changes in teleconnected patterns, rather than large-scale changes in base ENSO characteristics. As such, proxy insights into ENSO may require evidence to be considered over large spatial areas in order to deconvolve changes occurring in the NINO3.4 region from those relating to local climatic variables. To obtain robust histories of the ENSO and its remote impacts, we recommend interpretations of proxy records should be considered in conjunction with palaeo-reconstructions from within the central Pacific.


Sign in / Sign up

Export Citation Format

Share Document