Assimilation of GPS Radio Occultation Refractivity Data from CHAMP and SAC-C Missions over High Southern Latitudes with MM5 4DVAR

2008 ◽  
Vol 136 (8) ◽  
pp. 2923-2944 ◽  
Author(s):  
Tae-Kwon Wee ◽  
Ying-Hwa Kuo ◽  
David H. Bromwich ◽  
Andrew J. Monaghan

Abstract In this study, the GPS radio occultation (RO) data from the Challenging Minisatellite Payload (CHAMP) and Satellite de Aplicaciones Cientificas-C (SAC-C) missions are assimilated. An updated version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) four-dimensional variational data assimilation system (4DVAR) is used to assess the impact of the GPS RO data on analyses and short-range forecasts over the Antarctic. The study was performed during the period of intense cyclonic activity in the Ross Sea, 9–19 December 2001. On average 66 GPS RO soundings were assimilated daily. For the assimilation over a single 12-h period, the impact of GPS RO data was only marginally positive or near neutral, and it varied markedly from one 12-h period to another. The large case-to-case variation was attributed to the low number of GPS RO soundings and a strong dependency of forecast impact on the location of the soundings relative to the rapidly developing cyclone. Despite the moderate general impact, noticeable reduction of temperature error in the upper troposphere and lower stratosphere was found, which demonstrates the value of GPS RO data in better characterizing the tropopause. Significant error reduction was also noted in geopotential height and wind fields in the stratosphere. Those improvements indicate that early detection of the upper-level precursors for storm development is a potential benefit of GPS RO data. When the assimilation period was extended to 48 h, a considerable positive impact of GPS RO data was found. All parameters that were investigated (i.e., temperature, pressure, and specific humidity) showed the positive impact throughout the entire model atmosphere for forecasts extending up to 5 days. The impact increased in proportion to the length of the assimilation period. Although the differences in the analyses as a result of GPS RO assimilation were relatively small initially, the subtle change and subsequent nonlinear growth led to noticeable forecast improvements at longer ranges. Consequently, the positive impact of GPS RO data was more evident in longer-range (e.g., greater than 2 days) forecasts. A correlation coefficient is introduced to quantify the linear relationship between the analysis errors without GPS RO assimilation and the analysis increments induced by GPS RO assimilation. This measure shows that the growth of GPS RO–induced modifications over time is related to the prominent error reduction observed in GPS RO experiments. The measure may also be useful for understanding how cycling analysis accumulates the positive impact of GPS RO data for an extended period of assimilation.

2006 ◽  
Vol 134 (11) ◽  
pp. 3283-3296 ◽  
Author(s):  
L. Cucurull ◽  
Y-H. Kuo ◽  
D. Barker ◽  
S. R. H. Rizvi

Abstract The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission was launched in April 2006. As part of its mission, COSMIC will provide approximately 2500–3000 global positioning system (GPS) radio occultation (RO) soundings per day distributed uniformly around the globe. In this study, a series of sensitivity experiments are conducted to assess the potential impact of COSMIC GPS RO data on the regional weather analysis over the Antarctic. Soundings of refractivity are assimilated into the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model using its three-dimensional variational data assimilation system. First, the sensitivity of the analysis to the background error statistics and balance constraints is analyzed. Then the effects of the data distribution and the observational error of the simulated refractivity observations are examined. In this study, the simulated soundings are based on a realistic set of orbit parameters of the COSMIC constellation. Analysis of the assimilation results indicates the significant potential impact of COSMIC data on regional analyses over the Antarctic. In the one case studied here, the root-mean-square differences between the background and observed values are reduced by 12% in the horizontal wind component, 17% in the temperature variable, 8% in the specific humidity, and 22% in the pressure field when COSMIC GPS RO data are assimilated into the system by using a 6-h assimilation time window. These preliminary results suggest that COSMIC GPS RO data can have a significant impact on operational numerical weather analysis in the Antarctic.


2016 ◽  
Vol 31 (1) ◽  
pp. 129-150 ◽  
Author(s):  
Ching-Yuang Huang ◽  
Shu-Ya Chen ◽  
S. K. A. V. Prasad Rao Anisetty ◽  
Shu-Chih Yang ◽  
Ling-Feng Hsiao

Abstract The impact of global positioning system (GPS) radio occultation (RO) soundings on the prediction of severe mei-yu frontal rainfall near Taiwan in June 2012 was investigated in this study using a developed local bending angle (LBA) operator. Two operators for local refractivity (REF) and nonlocal refractivity [excess phase (EPH)] were also used for comparisons. The devised LBA simplifies the calculation of the Abel transform in inverting model local refractivity without a loss of accuracy. These operators have been implemented into the three-dimensional variational data assimilation system of the Weather Research and Forecasting (WRF) Model to assimilate GPS RO soundings available from the Formosa Satellite Mission 3/Constellation Observing Systems for Meteorology, Ionosphere and Climate (FORMOSAT-3/COSMIC). The RO data are found to be beneficial to the WRF forecast of local severe rainfall in Taiwan. Characteristics of assimilation performance and innovation for the three operators are discussed. Both of the local operators performing assimilation at observation levels appear to produce mostly larger positive moisture increments than do the current nonlocal operators performing assimilation on the mean height of each model vertical level. As the information of the initial increments has propagated farther south with the frontal flow, the simulation for LBA shows better prediction of rainfall peaks in Taiwan on the second day than both REF and EPH, with a maximum improvement of about 25%. The positive impact of the RO data results partially from several RO observations near Mongolia and north China. This study provides an intercomparison among the three RO operators, and shows the feasibility of regional assimilation with LBA.


2020 ◽  
Vol 13 (1) ◽  
pp. 1
Author(s):  
Xu Xu ◽  
Xiaolei Zou

Global Positioning System (GPS) radio occultation (RO) and radiosonde (RS) observations are two major types of observations assimilated in numerical weather prediction (NWP) systems. Observation error variances are required input that determines the weightings given to observations in data assimilation. This study estimates the error variances of global GPS RO refractivity and bending angle and RS temperature and humidity observations at 521 selected RS stations using the three-cornered hat method with additional ERA-Interim reanalysis and Global Forecast System forecast data available from 1 January 2016 to 31 August 2019. The global distributions, of both RO and RS observation error variances, are analyzed in terms of vertical and latitudinal variations. Error variances of RO refractivity and bending angle and RS specific humidity in the lower troposphere, such as at 850 hPa (3.5 km impact height for the bending angle), all increase with decreasing latitude. The error variances of RO refractivity and bending angle and RS specific humidity can reach about 30 N-unit2, 3 × 10−6 rad2, and 2 (g kg−1)2, respectively. There is also a good symmetry of the error variances of both RO refractivity and bending angle with respect to the equator between the Northern and Southern Hemispheres at all vertical levels. In this study, we provide the mean error variances of refractivity and bending angle in every 5°-latitude band between the equator and 60°N, as well as every interval of 10 hPa pressure or 0.2 km impact height. The RS temperature error variance distribution differs from those of refractivity, bending angle, and humidity, which, at low latitudes, are smaller (less than 1 K2) than those in the midlatitudes (more than 3 K2). In the midlatitudes, the RS temperature error variances in North America are larger than those in East Asia and Europe, which may arise from different radiosonde types among the above three regions.


Author(s):  
Therese Rieckh ◽  
Jeremiah P. Sjoberg ◽  
Richard A. Anthes

AbstractWe apply the three-cornered hat (3CH) method to estimate refractivity, bending angle, and specific humidity error variances for a number of data sets widely used in research and/or operations: radiosondes, radio occultation (COSMIC, COSMIC-2), NCEP global forecasts, and nine reanalyses. We use a large number and combinations of data sets to obtain insights into the impact of the error correlations among different data sets that affect 3CH estimates. Error correlations may be caused by actual correlations of errors, representativeness differences, or imperfect co-location of the data sets. We show that the 3CH method discriminates among the data sets and how error statistics of observations compare to state-of-the-art reanalyses and forecasts, as well as reanalyses that do not assimilate satellite data. We explore results for October and November 2006 and 2019 over different latitudinal regions and show error growth of the NCEP forecasts with time. Because of the importance of tropospheric water vapor to weather and climate, we compare error estimates of refractivity for dry and moist atmospheric conditions.


2014 ◽  
Vol 21 (5) ◽  
pp. 1027-1041 ◽  
Author(s):  
K. Apodaca ◽  
M. Zupanski ◽  
M. DeMaria ◽  
J. A. Knaff ◽  
L. D. Grasso

Abstract. Lightning measurements from the Geostationary Lightning Mapper (GLM) that will be aboard the Geostationary Operational Environmental Satellite – R Series will bring new information that can have the potential for improving the initialization of numerical weather prediction models by assisting in the detection of clouds and convection through data assimilation. In this study we focus on investigating the utility of lightning observations in mesoscale and regional applications suitable for current operational environments, in which convection cannot be explicitly resolved. Therefore, we examine the impact of lightning observations on storm environment. Preliminary steps in developing a lightning data assimilation capability suitable for mesoscale modeling are presented in this paper. World Wide Lightning Location Network (WWLLN) data was utilized as a proxy for GLM measurements and was assimilated with the Maximum Likelihood Ensemble Filter, interfaced with the Nonhydrostatic Mesoscale Model core of the Weather Research and Forecasting system (WRF-NMM). In order to test this methodology, regional data assimilation experiments were conducted. Results indicate that lightning data assimilation had a positive impact on the following: information content, influencing several dynamical variables in the model (e.g., moisture, temperature, and winds), and improving initial conditions during several data assimilation cycles. However, the 6 h forecast after the assimilation did not show a clear improvement in terms of root mean square (RMS) errors.


2015 ◽  
Vol 8 (8) ◽  
pp. 3385-3393 ◽  
Author(s):  
S. B. Healy ◽  
I. D. Culverwell

Abstract. A modification to the standard bending-angle correction used in GPS radio occultation (GPS-RO) is proposed. The modified approach should reduce systematic residual ionospheric errors in GPS radio occultation climatologies. A new second-order term is introduced in order to account for a known source of systematic error, which is generally neglected. The new term has the form κ(a) × (αL1(a)-αL2(a))2, where a is the impact parameter and (αL1, αL2) are the L1 and L2 bending angles, respectively. The variable κ is a weak function of the impact parameter, a, but it does depend on a priori ionospheric information. The theoretical basis of the new term is examined. The sensitivity of κ to the assumed ionospheric parameters is investigated in one-dimensional simulations, and it is shown that κ ≃ 10–20 rad−1. We note that the current implicit assumption is κ=0, and this is probably adequate for numerical weather prediction applications. However, the uncertainty in κ should be included in the uncertainty estimates for the geophysical climatologies produced from GPS-RO measurements. The limitations of the new ionospheric correction when applied to CHAMP (Challenging Minisatellite Payload) measurements are noted. These arise because of the assumption that the refractive index is unity at the satellite, made when deriving bending angles from the Doppler shift values.


2007 ◽  
Vol 49 (2) ◽  
pp. 138-152 ◽  
Author(s):  
Christina Wai Mui Yu ◽  
Thomas Wing Yan Man

PurposeThe purpose of this paper is to introduce a case of an increasingly popular enterprise education programme in Hong Kong called the Teen Entrepreneurs Competition (TEC) and to examine its sustainability in different dimensions.Design/methodology/approachPost‐activity evaluation feedback was obtained from the participants and the stakeholders of the activity. Three systematic research studies were also conducted for investigating the impact of entrepreneurial characteristics and social interaction on the participants throughout TEC.FindingsParticipants and stakeholders generally provided positive feedback towards TEC. The research findings also showed that TEC was able to draw a positive impact on developing the participants' entrepreneurial characters and in turn made TEC sustainable on the provision of an enterprise education programme in the local community.Research limitations/implicationsIt is suggested that the sustainability of TEC is attributed to three dimensions, namely, opportunities for individual comprehensive understanding, context for collaborative learning, and network for institutional support.Practical implicationsSuggestions on how to further strengthen the sustainability of enterprise education programmes through these three dimensions are provided, for example, maximising individuals' practical experience, improving the quality of collaboration and developing a closer working relationship with various stakeholders.Originality/valueEnterprise education is recognised to have a significant influence on the development of entrepreneurial knowledge, skills and attitudes for youths. In order to widen the impact of enterprise education in society, it is necessary to sustain such enterprise education programmes over an extended period of time.


Author(s):  
L. CUCURULL ◽  
S. P. F. CASEY

AbstractAs global data assimilation systems continue to evolve, Observing System Simulation Experiments (OSSEs) need to be updated to accurately quantify the impact of proposed observing technologies in weather forecasting. Earlier OSSEs with radio occultation (RO) observations have been updated and the impact of the originally proposed Constellation Observing Satellites for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) mission, with a high-inclination and low-inclination component, has been investigated by using the operational data assimilation system at NOAA and a 1-dimensional bending angle RO forward operator. It is found that the impact of the low-inclination component of the originally planned COSMIC-2 mission (now officially named COSMIC-2) has significantly increased as compared to earlier studies, and significant positive impact is now found globally in terms of mass and wind fields. These are encouraging results as COSMIC-2 was successfully launched in June 2019 and data have been recently released to operational weather centers. Earlier findings remain valid indicating that globally distributed RO observations are more important to improve weather prediction globally than a denser sampling of the tropical latitudes. Overall, the benefits reported here from assimilating RO soundings are much more significant than the impacts found in previous OSSEs. This is largely attributed to changes in the data assimilation and forecast system and less to the more advanced 1-dimensional forward operator chosen for the assimilation of RO observations.


2014 ◽  
Vol 142 (11) ◽  
pp. 4187-4206 ◽  
Author(s):  
Shu-Ya Chen ◽  
Tae-Kwon Wee ◽  
Ying-Hwa Kuo ◽  
David H. Bromwich

Abstract The impact of global positioning system (GPS) radio occultation (RO) data on an intense synoptic-scale storm that occurred over the Southern Ocean in December 2007 is evaluated, and a synoptic explanation of the assessed impact is offered. The impact is assessed by using the three-dimensional variational data assimilation scheme (3DVAR) of the Weather Research and Forecasting (WRF) Model Data Assimilation system (WRFDA), and by comparing two experiments: one with and the other without assimilating the refractivity data from four different RO missions. Verifications indicate significant positive impacts of the RO data in various measures and parameters as well as in the track and intensity of the Antarctic cyclone. The analysis of the atmospheric processes underlying the impact shows that the assimilation of the RO data yields substantial improvements in the large-scale circulations that in turn control the development of the Antarctic storm. For instance, the RO data enhanced the strength of a 500-hPa trough over the Southern Ocean and prevented the katabatic flow near the coast of East Antarctica from an overintensification. This greatly influenced two low pressure systems of a comparable intensity, which later merged together and evolved into the major storm. The dominance of one low over the other in the merger dramatically changed the track, intensity, and structure of the merged storm. The assimilation of GPS RO data swapped the dominant low, leading to a remarkable improvement in the subsequent storm’s prediction.


2014 ◽  
Vol 7 (11) ◽  
pp. 11735-11769
Author(s):  
F. Ladstädter ◽  
A. K. Steiner ◽  
M. Schwärz ◽  
G. Kirchengast

Abstract. Observations from the GPS radio occultation (GPSRO) satellite technique and from the newly established GCOS Reference Upper Air Network (GRUAN) are both candidates to serve as reference observations in the Global Climate Observing System (GCOS). Such reference observations are key to decrease existing uncertainties in upper-air climate research. There are now more than 12 years of data available from GPSRO, with the recognized properties high accuracy, global coverage, high vertical resolution, and long-term stability. These properties make GPSRO a suitable choice for comparison studies with other upper-air observational systems. The GRUAN network consists of reference radiosonde ground stations (16 at present), which adhere to the GCOS climate monitoring principles. In this study, we intercompare GPSRO temperature and humidity profiles and Vaisala RS90/92 data from the "standard" global radiosonde network over the whole 2002 to 2013 time frame. Additionally, we include the first years of GRUAN data (using Vaisala RS92), available since 2009. GPSRO profiles which occur within 3 h and 300 km of radiosonde launches are used. Very good agreement is found between all three datasets with temperature differences usually less than 0.2 K. In the stratosphere above 30 hPa, temperature differences are larger but still within 0.5 K. Day/night comparisons with GRUAN data reveal small deviations likely related to a warm bias of the radiosonde data at high altitudes, but also residual errors from the GPSRO retrieval process might play a role. Vaisala RS90/92 specific humidity exhibits a dry bias of up to 40% in the upper troposphere, with a smaller bias at lower altitudes within 15%. GRUAN shows a marked improvement in the bias characteristics, with less than 5% difference to GPSRO up to 300 hPa. GPSRO dry temperature and physical temperature are validated using radiosonde data as reference. We find that GPSRO provides valuable long-term stable reference observations with well-defined error characteristics for climate applications and for anchoring other upper-air measurements.


Sign in / Sign up

Export Citation Format

Share Document