scholarly journals Global-Scale Energy and Freshwater Balance in Glacial Climate: A Comparison of Three PMIP2 LGM Simulations

2008 ◽  
Vol 21 (19) ◽  
pp. 5008-5033 ◽  
Author(s):  
Shigenori Murakami ◽  
Rumi Ohgaito ◽  
Ayako Abe-Ouchi ◽  
Michel Crucifix ◽  
Bette L. Otto-Bliesner

Abstract Three coupled atmosphere–ocean general circulation model (AOGCM) simulations of the Last Glacial Maximum (LGM: about 21 000 yr before present), conducted under the protocol of the second phase of the Paleoclimate Modelling Intercomparison Project (PMIP2), have been analyzed from a viewpoint of large-scale energy and freshwater balance. Atmospheric latent heat (LH) transport decreases at most latitudes due to reduced water vapor content in the lower troposphere, and dry static energy (DSE) transport in northern midlatitudes increases and changes the intensity contrast between the Pacific and Atlantic regions due to enhanced stationary waves over the North American ice sheets. In low latitudes, even with an intensified Hadley circulation in the Northern Hemisphere (NH), reduced DSE transport by the mean zonal circulation as well as a reduced equatorward LH transport is observed. The oceanic heat transport at NH midlatitudes increases owing to intensified subpolar gyres, and the Atlantic heat transport at low latitudes increases in all models whether or not meridional overturning circulation (MOC) intensifies. As a result, total poleward energy transport at the LGM increases in NH mid- and low latitudes in all models. Oceanic freshwater transport decreases, compensating for the response of the atmospheric water vapor transport. These responses in the atmosphere and ocean make the northern North Atlantic Ocean cold and relatively fresh, and the Southern Ocean relatively warm and saline. This is a common and robust feature in all models. The resultant ocean densities and ocean MOC response, however, show model dependency.

2008 ◽  
Vol 21 (3) ◽  
pp. 561-575 ◽  
Author(s):  
Michael Vellinga ◽  
Peili Wu

Abstract The Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) is used to analyze the relation between northward energy transports in the ocean and atmosphere at centennial time scales. In a transient water-hosing experiment, where suppressing the Atlantic meridional overturning circulation (MOC) causes a reduction in northward ocean heat transport of up to 0.75 PW (i.e., 75%), the atmosphere compensates by increasing its northward transport of moist static energy. This compensation is very efficient at low latitudes and near complete at the equator throughout the experiment, but is incomplete farther north across the northern midlatitude storm tracks. The change in atmosphere energy transport enables the model to find a new global-mean radiative equilibrium after 240 yr. In a perturbed physics ensemble of HadCM3 it was found that time-averaged meridional energy transports in ocean and atmosphere can act opposingly. Where model formulation causes an unbalanced mean climate state, for example, an excessive top-of-the-atmosphere radiative surplus at low latitudes, the atmosphere increases its poleward energy transport to disperse this excess. MOC and ocean poleward heat transport tend to be reduced in such model versions, and this offsets the increased poleward atmospheric transport of the low-latitude energy surplus. Model versions that are close to net radiative equilibrium also have ocean heat transport and MOC close to observed values.


2020 ◽  
Author(s):  
Wing-Le Chan ◽  
Ayako Abe-Ouchi

Abstract. The second phase of the Pliocene Model Intercomparison Project (PlioMIP2) has attracted many climate modelling groups in its continuing efforts to better understand the climate of the mid-Piacenzian warm period (mPWP) when atmospheric CO2 was last closest to present day levels. Like the first phase, PlioMIP1, it is an internationally coordinated initiative that allows for a systematic comparison of various models in a similar manner to PMIP. Model intercomparison and model-data comparison now focus specifically on the interglacial at marine isotope stage KM5c (3.205 Ma) and experimental design is not only based on new boundary conditions but includes various sensitivity experiments. In this study, we present results from long-term model integrations using the MIROC4m atmosphere-ocean coupled general circulation model, developed at the institutes CCSR/NIES/FRCGC in Japan. The core experiment, with CO2 levels set to 400 ppm, shows a warming of 3.1 °C compared to the Pre-Industrial, with two-thirds of the warming being contributed by the increase in CO2. Although this level of warming is less than that in the equivalent PlioMIP1 experiment, there is a slightly better agreement with proxy sea surface temperature (SST) data at PRISM3 locations, especially in the northern North Atlantic where there were large model-data discrepancies in PlioMIP1. Similar changes in precipitation and sea ice are seen and the Arctic remains ice-free in the summer. However, unlike PlioMIP1, the Atlantic Meridional Overturning Circulation (AMOC) is now stronger than that of the Pre-Industrial, even though increasing CO2 tends to weaken it. This stronger AMOC is a consequence of a closed Bering Strait in the PlioMIP2 paleogeography. Also, when present day boundary conditions are replaced by those of the Pliocene, the dependency of the AMOC strength on CO2 is significantly weakened. Sensitivity tests show that lower values of CO2 give a global SST which is overall more consistent with the PRISM3 SST field presented in PlioMIP1. Inclusion of dynamical vegetation and the effects of all realistic orbital configurations should be considered in future experiments using MIROC4m for the mPWP.


2009 ◽  
Vol 5 (2) ◽  
pp. 1133-1162 ◽  
Author(s):  
A. N. LeGrande ◽  
G. A. Schmidt

Abstract. Variability in water isotopes has been captured in numerous archives and used to infer climate change. Here we examine water isotope variability over the course of the Holocene using the water-isotope enabled, coupled atmosphere-ocean general circulation model, GISS ModelE-R. Eight Holocene time slices, mostly 1000 years apart are simulated using estimated changes in orbital configuration, greenhouse gases, and ice sheet extent. We find that water isotopes in the model match well with those captured in proxy climate archives in ice cores, ocean sediment cores, and speleothems. The climate changes associated with the water isotope changes, however, are more complex than simple modern analog interpretations. In particular, water isotope variability in Asian speleothems is linked to alterations in landward water vapor transport, not local precipitation, and ice sheet changes over North America lead to masking of temperature signals in Summit, Greenland. Salinity-seawater isotope variability is complicated by inter-ocean basin exchanges of water vapor. Water isotopes do reflect variability in the hydrologic cycle, but are better interpreted in terms of regional changes rather than local climate variables.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xiaoxin Yang ◽  
Tandong Yao

Abstract This study integrated isotopic composition in precipitation at 50 stations on and around the Tibetan Plateau (TP) and demonstrated the distinct seasonality of isotopic composition in precipitation across the study period. The potential effect of water vapor isotopes on precipitation isotopes is studied by comparing the station precipitation data with extensive isotopic patterns in atmospheric water vapor, revealing the close linkage between the two. The analysis of contemporary water vapor transport and potential helps confirm the different mechanisms behind precipitation isotopic compositions in different areas, as the southern TP is more closely related to large-scale atmospheric circulation such as local Hadley and summer monsoon circulations during other seasons than winter, while the northern TP is subject to the westerly prevalence and advective moisture supply and precipitation processes. The new data presented in this manuscript also enrich the current dataset for the study of precipitation isotopes in this region and together provide a valuable database for verification of the isotope-integrated general circulation model and explanation of related physical processes.


2018 ◽  
Vol 31 (6) ◽  
pp. 2417-2434 ◽  
Author(s):  
Masakazu Yoshimori ◽  
Ayako Abe-Ouchi ◽  
Hiroaki Tatebe ◽  
Toru Nozawa ◽  
Akira Oka

It has been shown that asymmetric warming between the Northern and Southern Hemisphere extratropics induces a meridional displacement of tropical precipitation. This shift is believed to be due to the extra energy transported from the differentially heated hemisphere through changes in the Hadley circulation. Generally, the column-integrated energy flux in the mean meridional overturning circulation follows the direction of the upper, relatively dry branch, and tropical precipitation tends to be intensified in the hemisphere with greater warming. This framework was originally applied to simulations that did not include ocean dynamical feedback, but was recently extended to take the ocean heat transport change into account. In the current study, an atmosphere–ocean general circulation model applied with a regional nudging technique is used to investigate the impact of extratropical warming on tropical precipitation change under realistic future climate projections. It is shown that warming at latitudes poleward of 40° causes the northward displacement of tropical precipitation from October to January. Warming at latitudes poleward of 60° alone has a much smaller effect. This change in the tropical precipitation is largely explained by the atmospheric moisture transport caused by changes in the atmospheric circulation. The larger change in ocean heat transport near the equator, relative to the atmosphere, is consistent with the extended energy framework. The current study provides a complementary dynamical framework that highlights the importance of midlatitude atmospheric eddies and equatorial ocean upwelling, where the atmospheric eddy feedback modifies the Hadley circulation resulting in the northward migration of precipitation and the ocean dynamical feedback damps the northward migration from the equator.


2007 ◽  
Vol 20 (24) ◽  
pp. 6023-6032 ◽  
Author(s):  
E. van der Swaluw ◽  
S. S. Drijfhout ◽  
W. Hazeleger

Abstract The mechanisms for Bjerknes compensation of heat transport variations through the atmosphere and ocean on decadal time scales are investigated, using data output from a preindustrial control run of the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3). It has recently been shown that Bjerknes compensation occurs on decadal time scales in a long preindustrial control run of HadCM3. This result is elaborated on by performing lead/lag correlations of the atmospheric and oceanic heat transports. By using statistical analysis, Bjerknes compensation is observed on decadal time scales at latitudes between 50° and 80°N. A maximum compensation rate of ∼55% occurs at 70°N. At this latitude, the correlation rate peaks when the ocean leads the atmosphere by one year. The mechanisms by which Bjerknes compensation occurs at this latitude are investigated. Anomalies in oceanic heat transport appear to be associated with variations in the strength of the Atlantic meridional overturning circulation (MOC). The associated sea surface temperature (SST) anomalies are in general too weak to assert a significant impact on the atmosphere. At 70°N, however, such SST anomalies are a prelude to the transition from sea ice coverage to open water after which the associated changes in heat exchange with the atmosphere are strong enough to force an atmospheric response. Because of the presence of a strong MOC component in the Atlantic Ocean, this interaction is confined to the region where the northeast Atlantic and Arctic Oceans connect. The atmospheric response to increased (decreased) heating from below is a decreased (increased) poleward temperature gradient, leading to a decreased (increased) heat transport by baroclinic eddies. The anomalous thermal low that is set up by heating from the ocean is associated with anomalous advection of cold air from the Greenland landmass.


2009 ◽  
Vol 5 (3) ◽  
pp. 441-455 ◽  
Author(s):  
A. N. LeGrande ◽  
G. A. Schmidt

Abstract. Variability in water isotopes has been captured in numerous archives and used to infer past climate changes. Here we examine water isotope variability over the course of the Holocene using the water-isotope enabled, coupled atmosphere-ocean general circulation model, GISS ModelE-R. Eight Holocene time slices, ~1000 years apart are simulated and driven by estimated changes in orbital configuration, greenhouse gases, and ice sheet extent. We find that simulated water isotope archives match well with those seen in ice cores, ocean sediment cores, and speleothems. The climate changes associated with the water isotope changes, however, are more complex than simple modern spatial slope interpretations might suggest. In particular, water isotope variability in Asian speleothems is linked to alterations in landward water vapor transport, not local precipitation, and ice sheet changes over North America lead to the masking of temperature signals in Summit, Greenland. Salinity-seawater isotope variability is complicated by inter-ocean basin exchanges of water vapor. Water isotopes do reflect variability in the hydrology, but are better interpreted in terms of regional hydrological cycle changes rather than as indicators of local climate.


2018 ◽  
Vol 31 (2) ◽  
pp. 775-786 ◽  
Author(s):  
Yi Ming ◽  
Isaac M. Held

This paper introduces an idealized general circulation model (GCM) in which water vapor and clouds are tracked as tracers, but are not allowed to affect circulation through either latent heat release or cloud radiative effects. The cloud scheme includes an explicit treatment of cloud microphysics and diagnoses cloud fraction from a prescribed subgrid distribution of total water. The model is capable of qualitatively capturing many large-scale features of water vapor and cloud distributions outside of the boundary layer and deep tropics. The subtropical dry zones, midlatitude storm tracks, and upper-tropospheric cirrus are simulated reasonably well. The inclusion of cloud microphysics (namely rain re-evaporation) has a modest but significant effect of moistening the lower troposphere in this model. When being subjected to a uniform fractional increase of saturated water vapor pressure, the model produces little change in cloud fraction. A more realistic perturbation, which considers the nonlinearity of the Clausius–Clapeyron relation and spatial structure of CO2-induced warming, results in a substantial reduction in the free-tropospheric cloud fraction. This is reconciled with an increase of relative humidity by analyzing the probability distributions of both quantities, and may help explain partly similar decreases in cloud fraction in full GCMs. The model provides a means to isolate individual processes or model components for studying their influences on cloud simulation in the extratropical free troposphere.


2009 ◽  
Vol 39 (7) ◽  
pp. 1756-1775 ◽  
Author(s):  
Steven R. Jayne

Abstract A parameterization of vertical diffusivity in ocean general circulation models has been implemented in the ocean model component of the Community Climate System Model (CCSM). The parameterization represents the dynamics of the mixing in the abyssal ocean arising from the breaking of internal waves generated by the tides forcing stratified flow over rough topography. This parameterization is explored over a range of parameters and compared to the more traditional ad hoc specification of the vertical diffusivity. Diapycnal mixing in the ocean is thought to be one of the primary controls on the meridional overturning circulation and the poleward heat transport by the ocean. When compared to the traditional approach with uniform mixing, the new mixing parameterization has a noticeable impact on the meridional overturning circulation; while the upper limb of the meridional overturning circulation appears to be only weakly impacted by the transition to the new parameterization, the deep meridional overturning circulation is significantly strengthened by the change. The poleward ocean heat transport does not appear to be strongly affected by the mixing in the abyssal ocean for reasonable parameter ranges. The transport of the Antarctic Circumpolar Current through the Drake Passage is related to the amount of mixing in the deep ocean. The new parameterization is found to be energetically consistent with the known constraints on the ocean energy budget.


2021 ◽  
Author(s):  
Masaru Yamamoto ◽  
Takumi Hirose ◽  
Kohei Ikeda ◽  
Masaaki Takahashi

<p>General circulation and waves are investigated using a T63 Venus general circulation model (GCM) with solar and thermal radiative transfer in the presence of high-resolution surface topography. This model has been developed by Ikeda (2011) at the Atmosphere and Ocean Research Institute (AORI), the University of Tokyo, and was used in Yamamoto et al. (2019, 2021). In the wind and static stability structures similar to the observed ones, the waves are investigated. Around the cloud-heating maximum (~65 km), the simulated thermal tides accelerate an equatorial superrotational flow with a speed of ~90 m/s<sup></sup>with rates of 0.2–0.5 m/s/(Earth day) via both horizontal and vertical momentum fluxes at low latitudes. Over the high mountains at low latitudes, the vertical wind variance at the cloud top is produced by topographically-fixed, short-period eddies, indicating penetrative plumes and gravity waves. In the solar-fixed coordinate system, the variances (i.e., the activity of waves other than thermal tides) of flow are relatively higher on the night-side than on the dayside at the cloud top. The local-time variation of the vertical eddy momentum flux is produced by both thermal tides and solar-related, small-scale gravity waves. Around the cloud bottom, the 9-day super-rotation of the zonal mean flow has a weak equatorial maximum and the 7.5-day Kelvin-like wave has an equatorial jet-like wind of 60-70 m/s. Because we discussed the thermal tide and topographically stationary wave in Yamamoto et al. (2021), we focus on the short-period eddies in the presentation.</p>


Sign in / Sign up

Export Citation Format

Share Document