scholarly journals Sources of Holocene variability of oxygen isotopes in paleoclimate archives

2009 ◽  
Vol 5 (3) ◽  
pp. 441-455 ◽  
Author(s):  
A. N. LeGrande ◽  
G. A. Schmidt

Abstract. Variability in water isotopes has been captured in numerous archives and used to infer past climate changes. Here we examine water isotope variability over the course of the Holocene using the water-isotope enabled, coupled atmosphere-ocean general circulation model, GISS ModelE-R. Eight Holocene time slices, ~1000 years apart are simulated and driven by estimated changes in orbital configuration, greenhouse gases, and ice sheet extent. We find that simulated water isotope archives match well with those seen in ice cores, ocean sediment cores, and speleothems. The climate changes associated with the water isotope changes, however, are more complex than simple modern spatial slope interpretations might suggest. In particular, water isotope variability in Asian speleothems is linked to alterations in landward water vapor transport, not local precipitation, and ice sheet changes over North America lead to the masking of temperature signals in Summit, Greenland. Salinity-seawater isotope variability is complicated by inter-ocean basin exchanges of water vapor. Water isotopes do reflect variability in the hydrology, but are better interpreted in terms of regional hydrological cycle changes rather than as indicators of local climate.

2009 ◽  
Vol 5 (2) ◽  
pp. 1133-1162 ◽  
Author(s):  
A. N. LeGrande ◽  
G. A. Schmidt

Abstract. Variability in water isotopes has been captured in numerous archives and used to infer climate change. Here we examine water isotope variability over the course of the Holocene using the water-isotope enabled, coupled atmosphere-ocean general circulation model, GISS ModelE-R. Eight Holocene time slices, mostly 1000 years apart are simulated using estimated changes in orbital configuration, greenhouse gases, and ice sheet extent. We find that water isotopes in the model match well with those captured in proxy climate archives in ice cores, ocean sediment cores, and speleothems. The climate changes associated with the water isotope changes, however, are more complex than simple modern analog interpretations. In particular, water isotope variability in Asian speleothems is linked to alterations in landward water vapor transport, not local precipitation, and ice sheet changes over North America lead to masking of temperature signals in Summit, Greenland. Salinity-seawater isotope variability is complicated by inter-ocean basin exchanges of water vapor. Water isotopes do reflect variability in the hydrologic cycle, but are better interpreted in terms of regional changes rather than local climate variables.


2004 ◽  
Vol 27 ◽  
pp. 27-52
Author(s):  
Felipe Das Neves Roque da Silva ◽  
José Ricardo Almeida França

The objective of this work is to evaluate climate changes caused by atmospheric CO2 concentration duplication. The LMD-Z atmosphere general circulation model (AGCM) was used (Laboratoire de Météorologie Dynamique - France). The model was integrated for a fifty years period and only the last forty years were used for analyses. This experiment have made two simulations: the first using the current CO2 concentration (control case) and the second using this concentration doubled (duplication case). Both were made with a variable spatial resolution with maximum of it centered in Rio de Janeiro. This way, there is a significant increase of model resolution in this region. To verify climate changes, anomaly fields generated by the model (duplication case minus control) were studied. It was possible to observe some characteristic effects of this type of experiment, such as great temperature increasing at surface in polar regions and in upper levels at low latitudes, cooling in stratosphere and intensification of hydrological cycle.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xiaoxin Yang ◽  
Tandong Yao

Abstract This study integrated isotopic composition in precipitation at 50 stations on and around the Tibetan Plateau (TP) and demonstrated the distinct seasonality of isotopic composition in precipitation across the study period. The potential effect of water vapor isotopes on precipitation isotopes is studied by comparing the station precipitation data with extensive isotopic patterns in atmospheric water vapor, revealing the close linkage between the two. The analysis of contemporary water vapor transport and potential helps confirm the different mechanisms behind precipitation isotopic compositions in different areas, as the southern TP is more closely related to large-scale atmospheric circulation such as local Hadley and summer monsoon circulations during other seasons than winter, while the northern TP is subject to the westerly prevalence and advective moisture supply and precipitation processes. The new data presented in this manuscript also enrich the current dataset for the study of precipitation isotopes in this region and together provide a valuable database for verification of the isotope-integrated general circulation model and explanation of related physical processes.


2013 ◽  
Vol 9 (2) ◽  
pp. 789-809 ◽  
Author(s):  
T. Tharammal ◽  
A. Paul ◽  
U. Merkel ◽  
D. Noone

Abstract. To understand the validity of δ18O proxy records as indicators of past temperature change, a series of experiments was conducted using an atmospheric general circulation model fitted with water isotope tracers (Community Atmosphere Model version 3.0, IsoCAM). A pre-industrial simulation was performed as the control experiment, as well as a simulation with all the boundary conditions set to Last Glacial Maximum (LGM) values. Results from the pre-industrial and LGM simulations were compared to experiments in which the influence of individual boundary conditions (greenhouse gases, ice sheet albedo and topography, sea surface temperature (SST), and orbital parameters) were changed each at a time to assess their individual impact. The experiments were designed in order to analyze the spatial variations of the oxygen isotopic composition of precipitation (δ18Oprecip) in response to individual climate factors. The change in topography (due to the change in land ice cover) played a significant role in reducing the surface temperature and δ18Oprecip over North America. Exposed shelf areas and the ice sheet albedo reduced the Northern Hemisphere surface temperature and δ18Oprecip further. A global mean cooling of 4.1 °C was simulated with combined LGM boundary conditions compared to the control simulation, which was in agreement with previous experiments using the fully coupled Community Climate System Model (CCSM3). Large reductions in δ18Oprecip over the LGM ice sheets were strongly linked to the temperature decrease over them. The SST and ice sheet topography changes were responsible for most of the changes in the climate and hence the δ18Oprecip distribution among the simulations.


2008 ◽  
Vol 21 (19) ◽  
pp. 5008-5033 ◽  
Author(s):  
Shigenori Murakami ◽  
Rumi Ohgaito ◽  
Ayako Abe-Ouchi ◽  
Michel Crucifix ◽  
Bette L. Otto-Bliesner

Abstract Three coupled atmosphere–ocean general circulation model (AOGCM) simulations of the Last Glacial Maximum (LGM: about 21 000 yr before present), conducted under the protocol of the second phase of the Paleoclimate Modelling Intercomparison Project (PMIP2), have been analyzed from a viewpoint of large-scale energy and freshwater balance. Atmospheric latent heat (LH) transport decreases at most latitudes due to reduced water vapor content in the lower troposphere, and dry static energy (DSE) transport in northern midlatitudes increases and changes the intensity contrast between the Pacific and Atlantic regions due to enhanced stationary waves over the North American ice sheets. In low latitudes, even with an intensified Hadley circulation in the Northern Hemisphere (NH), reduced DSE transport by the mean zonal circulation as well as a reduced equatorward LH transport is observed. The oceanic heat transport at NH midlatitudes increases owing to intensified subpolar gyres, and the Atlantic heat transport at low latitudes increases in all models whether or not meridional overturning circulation (MOC) intensifies. As a result, total poleward energy transport at the LGM increases in NH mid- and low latitudes in all models. Oceanic freshwater transport decreases, compensating for the response of the atmospheric water vapor transport. These responses in the atmosphere and ocean make the northern North Atlantic Ocean cold and relatively fresh, and the Southern Ocean relatively warm and saline. This is a common and robust feature in all models. The resultant ocean densities and ocean MOC response, however, show model dependency.


2020 ◽  
Author(s):  
Fiona Turner ◽  
Richard Wilkinson ◽  
Caitlin Buck ◽  
Julie M. Jones ◽  
Louise Sime

<p>Understanding the effect warming has on ice sheets is vital for accurate projections of climate change. A better understanding of how the Antarctic ice sheets have changed size and shape in the past would allow us to improve our predictions of how they may adapt in the future; this is of particular relevance in predicting future global sea level changes. This research makes use of previous reconstructions of the ice sheets, ice core data and Bayesian methods to create a model of the Antarctic ice sheet at the Last Glacial Maximum (LGM). We do this by finding the relationship between the ice sheet shape and water isotope values. </p><p>We developed a prior model which describes the variation between a set of ice sheet reconstructions at the LGM. A set of ice sheet shapes formed using this model was determined by a consultation with experts and run through the general circulation model HadCM3, providing us with paired data sets of ice sheet shapes and water isotope estimates. The relationship between ice sheet shape and water isotopes is explored using a Gaussian process emulator of HadCM3, building a statistical distribution describing the shape of the ice sheets given the isotope values outputted by the climate model. We then use MCMC to sample from the posterior distribution of the ice sheet shape and attempt to find a shape that creates isotopic values matching as closely as possible to the observations collected from ice cores. This allows us to quantify the uncertainty in the shape and incorporate expert beliefs about the Antarctic ice sheet during this time period. Our results suggests that there may have been a thicker West Antarctic ice sheet at the LGM than previously estimated.</p>


2012 ◽  
Vol 8 (2) ◽  
pp. 1319-1368 ◽  
Author(s):  
T. Tharammal ◽  
A. Paul ◽  
U. Merkel ◽  
D. Noone

Abstract. A series of experiments was conducted using a water isotope tracers-enabled atmospheric general circulation model (Community Atmosphere Model version 3.0, CAM3.0-Iso), by changing the individual boundary conditions (greenhouse gases, ice sheet albedo and topography, sea-surface temperature) each at a time to Last Glacial Maximum (LGM) values. In addition, a combined simulation with all the boundary conditions being set to LGM values was carried out. A pre-industrial (PI) simulation with boundary conditions taken according to the PMIP2 (Paleoclimate Modelling Intercomparison Project) protocol was performed as the control experiment. The experiments were designed in order to analyze the temporal and spatial variations of the oxygen isotopic composition of precipitation (δ18Oprecip) in response to individual climate factors. The change in topography (due to the change in land-ice cover) played a significant role in reducing the surface temperature and δ18Oprecip over North America. Exposed shelf areas and the ice sheet albedo reduced the Northern Hemisphere surface temperature and δ18Oprecip further. A global mean cooling of 4.1 °C was simulated with combined LGM boundary conditions compared to the control simulation, which was in agreement with previous experiments using the fully coupled Community Climate System Model (CCSM3). Large reductions in δ18Oprecip over the LGM ice sheets were highly correlated with the temperature decrease over them. The SST and ice sheet topography changes were found to be responsible for most of the changes in the climate and hence the δ18Oprecip distribution among the simulations.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4468
Author(s):  
Yalalt Nyamgerel ◽  
Yeongcheol Han ◽  
Minji Kim ◽  
Dongchan Koh ◽  
Jeonghoon Lee

The triple oxygen isotopes (16O, 17O, and 18O) are very useful in hydrological and climatological studies because of their sensitivity to environmental conditions. This review presents an overview of the published literature on the potential applications of 17O in hydrological studies. Dual-inlet isotope ratio mass spectrometry and laser absorption spectroscopy have been used to measure 17O, which provides information on atmospheric conditions at the moisture source and isotopic fractionations during transport and deposition processes. The variations of δ17O from the developed global meteoric water line, with a slope of 0.528, indicate the importance of regional or local effects on the 17O distribution. In polar regions, factors such as the supersaturation effect, intrusion of stratospheric vapor, post-depositional processes (local moisture recycling through sublimation), regional circulation patterns, sea ice concentration and local meteorological conditions determine the distribution of 17O-excess. Numerous studies have used these isotopes to detect the changes in the moisture source, mixing of different water vapor, evaporative loss in dry regions, re-evaporation of rain drops during warm precipitation and convective storms in low and mid-latitude waters. Owing to the large variation of the spatial scale of hydrological processes with their extent (i.e., whether the processes are local or regional), more studies based on isotopic composition of surface and subsurface water, convective precipitation, and water vapor, are required. In particular, in situ measurements are important for accurate simulations of atmospheric hydrological cycles by isotope-enabled general circulation models.


2019 ◽  
Vol 116 (10) ◽  
pp. 4099-4104 ◽  
Author(s):  
Louise C. Sime ◽  
Peter O. Hopcroft ◽  
Rachael H. Rhodes

Greenland ice cores provide excellent evidence of past abrupt climate changes. However, there is no universally accepted theory of how and why these Dansgaard–Oeschger (DO) events occur. Several mechanisms have been proposed to explain DO events, including sea ice, ice shelf buildup, ice sheets, atmospheric circulation, and meltwater changes. DO event temperature reconstructions depend on the stable water isotope (δ18O) and nitrogen isotope measurements from Greenland ice cores: interpretation of these measurements holds the key to understanding the nature of DO events. Here, we demonstrate the primary importance of sea ice as a control on Greenland ice coreδ18O: 95% of the variability inδ18O in southern Greenland is explained by DO event sea ice changes. Our suite of DO events, simulated using a general circulation model, accurately captures the amplitude ofδ18O enrichment during the abrupt DO event onsets. Simulated geographical variability is broadly consistent with available ice core evidence. We find an hitherto unknown sensitivity of theδ18O paleothermometer to the magnitude of DO event temperature increase: the change inδ18O per Kelvin temperature increase reduces with DO event amplitude. We show that this effect is controlled by precipitation seasonality.


2009 ◽  
Vol 22 (10) ◽  
pp. 2639-2658 ◽  
Author(s):  
Grant Branstator ◽  
Frank Selten

Abstract A 62-member ensemble of coupled general circulation model (GCM) simulations of the years 1940–2080, including the effects of projected greenhouse gas increases, is examined. The focus is on the interplay between the trend in the Northern Hemisphere December–February (DJF) mean state and the intrinsic modes of variability of the model atmosphere as given by the upper-tropospheric meridional wind. The structure of the leading modes and the trend are similar. Two commonly proposed explanations for this similarity are considered. Several results suggest that this similarity in most respects is consistent with an explanation involving patterns that result from the model dynamics being well approximated by a linear system. Specifically, the leading intrinsic modes are similar to the leading modes of a stochastic model linearized about the mean state of the GCM atmosphere, trends in GCM tropical precipitation appear to excite the leading linear pattern, and the probability density functions (PDFs) of prominent circulation patterns are quasi-Gaussian. There are, on the other hand, some subtle indications that an explanation for the similarity involving preferred states (which necessarily result from nonlinear influences) has some relevance. For example, though unimodal, PDFs of prominent patterns have departures from Gaussianity that are suggestive of a mixture of two Gaussian components. And there is some evidence of a shift in probability between the two components as the climate changes. Interestingly, contrary to the most prominent theory of the influence of nonlinearly produced preferred states on climate change, the centroids of the components also change as the climate changes. This modification of the system’s preferred states corresponds to a change in the structure of its dominant patterns. The change in pattern structure is reproduced by the linear stochastic model when its basic state is modified to correspond to the trend in the general circulation model’s mean atmospheric state. Thus, there is a two-way interaction between the trend and the modes of variability.


Sign in / Sign up

Export Citation Format

Share Document