Bjerknes Compensation at High Northern Latitudes: The Ocean Forcing the Atmosphere

2007 ◽  
Vol 20 (24) ◽  
pp. 6023-6032 ◽  
Author(s):  
E. van der Swaluw ◽  
S. S. Drijfhout ◽  
W. Hazeleger

Abstract The mechanisms for Bjerknes compensation of heat transport variations through the atmosphere and ocean on decadal time scales are investigated, using data output from a preindustrial control run of the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3). It has recently been shown that Bjerknes compensation occurs on decadal time scales in a long preindustrial control run of HadCM3. This result is elaborated on by performing lead/lag correlations of the atmospheric and oceanic heat transports. By using statistical analysis, Bjerknes compensation is observed on decadal time scales at latitudes between 50° and 80°N. A maximum compensation rate of ∼55% occurs at 70°N. At this latitude, the correlation rate peaks when the ocean leads the atmosphere by one year. The mechanisms by which Bjerknes compensation occurs at this latitude are investigated. Anomalies in oceanic heat transport appear to be associated with variations in the strength of the Atlantic meridional overturning circulation (MOC). The associated sea surface temperature (SST) anomalies are in general too weak to assert a significant impact on the atmosphere. At 70°N, however, such SST anomalies are a prelude to the transition from sea ice coverage to open water after which the associated changes in heat exchange with the atmosphere are strong enough to force an atmospheric response. Because of the presence of a strong MOC component in the Atlantic Ocean, this interaction is confined to the region where the northeast Atlantic and Arctic Oceans connect. The atmospheric response to increased (decreased) heating from below is a decreased (increased) poleward temperature gradient, leading to a decreased (increased) heat transport by baroclinic eddies. The anomalous thermal low that is set up by heating from the ocean is associated with anomalous advection of cold air from the Greenland landmass.

2005 ◽  
Vol 35 (5) ◽  
pp. 601-615 ◽  
Author(s):  
M. A. Lucas ◽  
J. J. Hirschi ◽  
J. D. Stark ◽  
J. Marotzke

Abstract The response of an idealized ocean basin to variable buoyancy forcing is examined. A general circulation model that employs a Gent–McWilliams mixing parameterization is forced by a zonally constant restoring surface temperature profile, which varies with latitude and time over a period P. In each experiment, 17 different values of P are studied, ranging from 6 months to 32 000 yr. The model's meridional overturning circulation (MOC) exhibits a very strong response on all time scales greater than 15 yr, up to and including the longest forcing time scales examined. The peak-to-peak values of the MOC oscillations reach up to 125% of the steady-state maximum MOC and exhibit resonance-like behavior, with a maximum at centennial to millennial forcing periods (depending on the vertical diffusivity). This resonance-like behavior stems from the existence of two adjustment time scales, one of which is set by the vertical diffusion and the other of which is set by the basin width. Furthermore, the linearity of the response as well as its lag with the forcing varies with the forcing period. The considerable deviation from the quasi-equilibrium response at all time scales above 15 yr is surprising and suggests a potentially important role of the ocean circulation for climate, even at Milankovich time scales.


2004 ◽  
Vol 17 (23) ◽  
pp. 4498-4511 ◽  
Author(s):  
Michael Vellinga ◽  
Peili Wu

Abstract Variability of the thermohaline circulation (THC) has been analyzed in a long control simulation by the Met Office's Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3). It is shown that internal THC variability in the coupled climate system is concentrated at interannual and centennial time scales, with the centennial mode being dominant. Centennial oscillations of the THC can impact surface climate via an interhemispheric SST contrast of 0.1°C in the Tropics and more than 0.5°C in mid- and high latitudes. A mechanism is proposed based on detailed process analysis involving large-scale air–sea interaction on multidecadal time scales. Anomalous northward ocean heat transport associated with a strong phase of the Atlantic THC generates a cross-equatorial SST gradient. This causes the ITCZ to move to a more northerly position with increased strength. The extra rainfall resulting from the anomalous ITCZ imposes a freshwater flux and produces a salinity anomaly in the tropical North Atlantic. Such sustained salinity anomalies slowly propagate toward the subpolar North Atlantic at a lag of 5–6 decades. The accumulated low-salinity water lowers upper-ocean density, which causes the THC to slow down. The oscillation then enters the opposite phase.


2009 ◽  
Vol 22 (1) ◽  
pp. 177-192 ◽  
Author(s):  
Masamichi Ohba ◽  
Hiroaki Ueda

Abstract Physical processes that are responsible for the asymmetric transition processes between El Niño and La Niña events are investigated by using observational data and physical models to examine the nonlinear atmospheric response to SST. The air–sea coupled system of ENSO is able to remain in a weak, cold event for up to 2 yr, while the system of a relatively warm event turns into a cold phase. Through analysis of the oceanic observational data, it is found that there is a strong difference in thermocline variations in relation to surface zonal wind anomalies in the equatorial Pacific (EP) during the mature-to-decaying phase of ENSO. The atmospheric response for the warm phase of ENSO causes a rapid reduction of the EP westerlies in boreal winter, which play a role in hastening the following ENSO transition through the generation of upwelling oceanic Kelvin waves. However, the anomalous EP easterlies in the cold phase persist to the subsequent spring, which tends to counteract the turnabout from the cold to warm phase of ENSO. A suite of idealized atmospheric general circulation model (AGCM) experiments are performed by imposing two different ENSO-related SST anomalies, which have equal amplitudes but opposite signs. The nonlinear climate response in the AGCM is found at the mature-to-decaying phase of ENSO that closely resembles the observations, including a zonal and meridional shift in the equatorial positions of the atmospheric wind. By using a simple ocean model, it is determined that the asymmetric responses of the equatorial zonal wind result in different recovery times of the thermocline in the eastern Pacific. Thus, the differences in transition processes between the warm and cold ENSO event are fundamentally due to the nonlinear atmospheric response to SST, which originates from the distribution of climatological SST and its seasonal changes. By including the asymmetric wind responses the intermediate air–sea coupled model herein demonstrates that the essential elements of the redevelopment of La Niña arise from the nonlinear atmospheric response to SST anomalies.


2008 ◽  
Vol 21 (3) ◽  
pp. 561-575 ◽  
Author(s):  
Michael Vellinga ◽  
Peili Wu

Abstract The Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3) is used to analyze the relation between northward energy transports in the ocean and atmosphere at centennial time scales. In a transient water-hosing experiment, where suppressing the Atlantic meridional overturning circulation (MOC) causes a reduction in northward ocean heat transport of up to 0.75 PW (i.e., 75%), the atmosphere compensates by increasing its northward transport of moist static energy. This compensation is very efficient at low latitudes and near complete at the equator throughout the experiment, but is incomplete farther north across the northern midlatitude storm tracks. The change in atmosphere energy transport enables the model to find a new global-mean radiative equilibrium after 240 yr. In a perturbed physics ensemble of HadCM3 it was found that time-averaged meridional energy transports in ocean and atmosphere can act opposingly. Where model formulation causes an unbalanced mean climate state, for example, an excessive top-of-the-atmosphere radiative surplus at low latitudes, the atmosphere increases its poleward energy transport to disperse this excess. MOC and ocean poleward heat transport tend to be reduced in such model versions, and this offsets the increased poleward atmospheric transport of the low-latitude energy surplus. Model versions that are close to net radiative equilibrium also have ocean heat transport and MOC close to observed values.


2012 ◽  
Vol 25 (1) ◽  
pp. 350-362 ◽  
Author(s):  
Christopher G. Piecuch ◽  
Rui M. Ponte

Abstract Ocean heat budgets and transports are diagnosed to elucidate the importance of general circulation changes to Atlantic Ocean heat storage rates. The focus is on low- and midlatitude regions and on seasonal and interannual time scales. An estimate of the ocean state over 1993–2004, produced by a coarse-resolution general circulation model fit to observations via the method of Lagrange multipliers, is used. Meridional heat transports are first decomposed into contributions from time-mean and time-variable velocity and temperature and second from zonally symmetric baroclinic (overturning, including Ekman) and zonally asymmetric (gyre and other spatially correlated) circulations. Heat storage rates are then ascribed to ocean–atmosphere heat exchanges, diffusive mixing, and advective processes related to the various components of the meridional heat transport. Results show that seasonal heat storage changes generally represent a local response to surface heat inputs, but seasonal advective changes are also important near the equator. Interannual heat storage rate anomalies are mostly due to advection in tropical regions, whereas both surface heat fluxes and advection contribute at higher latitudes. Low-latitude advection can be primarily attributed to zonally symmetric baroclinic circulations, but temperature variations and zonally asymmetric flows can contribute elsewhere. A relationship between interannual heat storage rates in the equatorial Atlantic’s top 100 m and meridional heat transport associated with the zonally symmetric baroclinic flow is observed; however, due in part to the role of shallow advective processes at these latitudes, any direct relationship between sea surface temperature variability and heat transport changes associated with intermediate or deep meridional overturning circulations is not clear.


2018 ◽  
Vol 31 (6) ◽  
pp. 2417-2434 ◽  
Author(s):  
Masakazu Yoshimori ◽  
Ayako Abe-Ouchi ◽  
Hiroaki Tatebe ◽  
Toru Nozawa ◽  
Akira Oka

It has been shown that asymmetric warming between the Northern and Southern Hemisphere extratropics induces a meridional displacement of tropical precipitation. This shift is believed to be due to the extra energy transported from the differentially heated hemisphere through changes in the Hadley circulation. Generally, the column-integrated energy flux in the mean meridional overturning circulation follows the direction of the upper, relatively dry branch, and tropical precipitation tends to be intensified in the hemisphere with greater warming. This framework was originally applied to simulations that did not include ocean dynamical feedback, but was recently extended to take the ocean heat transport change into account. In the current study, an atmosphere–ocean general circulation model applied with a regional nudging technique is used to investigate the impact of extratropical warming on tropical precipitation change under realistic future climate projections. It is shown that warming at latitudes poleward of 40° causes the northward displacement of tropical precipitation from October to January. Warming at latitudes poleward of 60° alone has a much smaller effect. This change in the tropical precipitation is largely explained by the atmospheric moisture transport caused by changes in the atmospheric circulation. The larger change in ocean heat transport near the equator, relative to the atmosphere, is consistent with the extended energy framework. The current study provides a complementary dynamical framework that highlights the importance of midlatitude atmospheric eddies and equatorial ocean upwelling, where the atmospheric eddy feedback modifies the Hadley circulation resulting in the northward migration of precipitation and the ocean dynamical feedback damps the northward migration from the equator.


2013 ◽  
Vol 26 (9) ◽  
pp. 2862-2879 ◽  
Author(s):  
Brian E. J. Rose ◽  
David Ferreira ◽  
John Marshall

Abstract The coupled climate dynamics underlying large, rapid, and potentially irreversible changes in ice cover are studied. A global atmosphere–ocean–sea ice general circulation model with idealized aquaplanet geometry is forced by gradual multi-millennial variations in solar luminosity. The model traverses a hysteresis loop between warm ice-free conditions and cold glacial conditions in response to ±5 W m−2 variations in global, annual-mean insolation. Comparison of several model configurations confirms the importance of polar ocean processes in setting the sensitivity and time scales of the transitions. A “sawtooth” character is found with faster warming and slower cooling, reflecting the opposing effects of surface heating and cooling on upper-ocean buoyancy and, thus, effective heat capacity. The transition from a glacial to warm, equable climate occurs in about 200 years. In contrast to the “freshwater hosing” scenario, transitions are driven by radiative forcing and sea ice feedbacks. The ocean circulation, and notably the meridional overturning circulation (MOC), does not drive the climate change. The MOC (and associated heat transport) collapses poleward of the advancing ice edge, but this is a purely passive response to cooling and ice expansion. The MOC does, however, play a key role in setting the time scales of the transition and contributes to the asymmetry between warming and cooling.


2008 ◽  
Vol 21 (19) ◽  
pp. 5008-5033 ◽  
Author(s):  
Shigenori Murakami ◽  
Rumi Ohgaito ◽  
Ayako Abe-Ouchi ◽  
Michel Crucifix ◽  
Bette L. Otto-Bliesner

Abstract Three coupled atmosphere–ocean general circulation model (AOGCM) simulations of the Last Glacial Maximum (LGM: about 21 000 yr before present), conducted under the protocol of the second phase of the Paleoclimate Modelling Intercomparison Project (PMIP2), have been analyzed from a viewpoint of large-scale energy and freshwater balance. Atmospheric latent heat (LH) transport decreases at most latitudes due to reduced water vapor content in the lower troposphere, and dry static energy (DSE) transport in northern midlatitudes increases and changes the intensity contrast between the Pacific and Atlantic regions due to enhanced stationary waves over the North American ice sheets. In low latitudes, even with an intensified Hadley circulation in the Northern Hemisphere (NH), reduced DSE transport by the mean zonal circulation as well as a reduced equatorward LH transport is observed. The oceanic heat transport at NH midlatitudes increases owing to intensified subpolar gyres, and the Atlantic heat transport at low latitudes increases in all models whether or not meridional overturning circulation (MOC) intensifies. As a result, total poleward energy transport at the LGM increases in NH mid- and low latitudes in all models. Oceanic freshwater transport decreases, compensating for the response of the atmospheric water vapor transport. These responses in the atmosphere and ocean make the northern North Atlantic Ocean cold and relatively fresh, and the Southern Ocean relatively warm and saline. This is a common and robust feature in all models. The resultant ocean densities and ocean MOC response, however, show model dependency.


2005 ◽  
Vol 35 (8) ◽  
pp. 1455-1472 ◽  
Author(s):  
Armin Köhl

Abstract Optimal observations are used to investigate the overturning streamfunction in the North Atlantic at 30°N and 900-m depth. Those observations are designed to impact the meridional overturning circulation (MOC) in numerical models maximally when assimilated and therefore establish the most efficient observation network for studying changes in the MOC. They are also ideally suited for studying the related physical mechanisms in a general circulation model. Optimal observations are evaluated here in the framework of a global 1° model over a 10-yr period. Hydrographic observations useful to monitor the MOC are primarily located along the western boundary north of 30°N and along the eastern boundary south of 30°N. Additional locations are in the Labrador, Irminger, and Iberian Seas. On time scales of less than a year, variations in MOC are mainly wind driven and are made up through changes in Ekman transport and coastal up- and downwelling. Only a small fraction is buoyancy driven and constitutes a slow response, acting on time scales of a few years, to primarily wintertime anomalies in the Labrador and Irminger Seas. Those anomalies are communicated southward along the west coast by internal Kelvin waves at the depth level of Labrador Sea Water. They primarily set the conditions at the northern edge of the MOC anomaly. The southern edge is mainly altered through Rossby waves of the advective type, which originate from temperature and salinity anomalies in the Canary Basin. Those anomalies are amplified on their way westward in the baroclinic unstable region of the subtropical gyre. The exact meridional location of the maximum MOC response is therefore set by the ratio of the strength of these two signals.


2017 ◽  
Vol 30 (2) ◽  
pp. 509-525 ◽  
Author(s):  
Guidi Zhou ◽  
Mojib Latif ◽  
Richard J. Greatbatch ◽  
Wonsun Park

By performing two sets of high-resolution atmospheric general circulation model (AGCM) experiments, the authors find that the atmospheric response to a sea surface temperature (SST) anomaly in the extratropical North Pacific is sensitive to decadal variations of the background SST on which the SST anomaly is superimposed. The response in the first set of experiments, in which the SST anomaly is superimposed on the observed daily SST of 1981–90, strongly differs from the response in the second experiment, in which the same SST anomaly is superimposed on the observed daily SST of 1991–2000. The atmospheric response over the North Pacific during 1981–90 is eddy mediated, equivalent barotropic, and concentrated in the east. In contrast, the atmospheric response during 1991–2000 is weaker and strongest in the west. The results are discussed in terms of Rossby wave dynamics, with the proposed primary wave source switching from baroclinic eddy vorticity forcing over the eastern North Pacific in 1981–90 to mean-flow divergence over the western North Pacific in 1991–2000. The wave source changes are linked to the decadal reduction of daily SST variability over the eastern North Pacific and strengthening of the Oyashio Extension front over the western North Pacific. Thus, both daily and frontal aspects of the background SST variability in determining the atmospheric response to extratropical North Pacific SST anomalies are emphasized by these AGCM experiments.


Sign in / Sign up

Export Citation Format

Share Document