scholarly journals Hindcasts of Tropical Atlantic SST Gradient and South American Precipitation: The Influences of the ENSO Forcing and the Atlantic Preconditioning

2009 ◽  
Vol 22 (9) ◽  
pp. 2405-2421 ◽  
Author(s):  
Huei-Ping Huang ◽  
Andrew W. Robertson ◽  
Yochanan Kushnir ◽  
Shiling Peng

Abstract Hindcast experiments for the tropical Atlantic sea surface temperature (SST) gradient G1, defined as tropical North Atlantic SST anomaly minus tropical South Atlantic SST anomaly, are performed using an atmospheric general circulation model coupled to a mixed layer ocean over the Atlantic to quantify the contributions of the El Niño–Southern Oscillation (ENSO) forcing and the preconditioning in the Atlantic to G1 in boreal spring. The results confirm previous observational analyses that, in the years with a persistent ENSO SST anomaly from boreal winter to spring, the ENSO forcing plays a primary role in determining the tendency of G1 from winter to spring and the sign of G1 in late spring. In the hindcasts, the initial perturbations in Atlantic SST in boreal winter are found to generally persist beyond a season, leaving a secondary but nonnegligible contribution to the predicted Atlantic SST gradient in spring. For 1993/94, a neutral year with a large preexisting G1 in winter, the hindcast using the information of Atlantic preconditioning alone is found to reproduce the observed G1 in spring. The seasonal predictability in precipitation over South America is examined in the hindcast experiments. For the recent events that can be validated with high-quality observations, the hindcasts produced dryness in boreal spring 1983, wetness in spring 1996, and wetness in spring 1994 over northern Brazil that are qualitatively consistent with observations. An inclusion of the Atlantic preconditioning is found to help the prediction of South American rainfall in boreal spring. For the ENSO years, discrepancies remain between the hindcast and observed precipitation anomalies over northern and equatorial South America, an error that is partially attributed to the biased atmospheric response to ENSO forcing in the model. The hindcast of the 1993/94 neutral year does not suffer this error. It constitutes an intriguing example of useful seasonal forecast of G1 and South American rainfall anomalies without ENSO.

2008 ◽  
Vol 363 (1498) ◽  
pp. 1761-1766 ◽  
Author(s):  
Peter Good ◽  
Jason A Lowe ◽  
Mat Collins ◽  
Wilfran Moufouma-Okia

Future changes in meridional sea surface temperature (SST) gradients in the tropical Atlantic could influence Amazon dry-season precipitation by shifting the patterns of moisture convergence and vertical motion. Unlike for the El Niño-Southern Oscillation, there are no standard indices for quantifying this gradient. Here we describe a method for identifying the SST gradient that is most closely associated with June–August precipitation over the south Amazon. We use an ensemble of atmospheric general circulation model (AGCM) integrations forced by observed SST from 1949 to 2005. A large number of tropical Atlantic SST gradient indices are generated randomly and temporal correlations are examined between these indices and June–August precipitation averaged over the Amazon Basin south of the equator. The indices correlating most strongly with June–August southern Amazon precipitation form a cluster of near-meridional orientation centred near the equator. The location of the southern component of the gradient is particularly well defined in a region off the Brazilian tropical coast, consistent with known physical mechanisms. The chosen index appears to capture much of the Atlantic SST influence on simulated southern Amazon dry-season precipitation, and is significantly correlated with observed southern Amazon precipitation. We examine the index in 36 different coupled atmosphere–ocean model projections of climate change under a simple compound 1% increase in CO 2 . Within the large spread of responses, we find a relationship between the projected trend in the index and the Amazon dry-season precipitation trends. Furthermore, the magnitude of the trend relationship is consistent with the inter-annual variability relationship found in the AGCM simulations. This suggests that the index would be of use in quantifying uncertainties in climate change in the region.


2017 ◽  
Vol 30 (1) ◽  
pp. 109-127 ◽  
Author(s):  
Wenping Jiang ◽  
Gang Huang ◽  
Kaiming Hu ◽  
Renguang Wu ◽  
Hainan Gong ◽  
...  

The impacts of El Niño–Southern Oscillation (ENSO) on the northwest Pacific (NWP) climate during ENSO decay summers are investigated based on the outputs of 37 coupled general circulation models (CGCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5). Large intermodel spread exists in the 37 state-of-the-art CGCMs in simulating the ENSO–NWP relationship. Eight high-skill and eight low-skill models are selected to explore how the bias arises. By comparing the results among high-skill models, low-skill models, and observations, the simulation skill of the ENSO–NWP relationship largely depends on whether the model can reasonably reproduce the ENSO decay pace. Warm SST anomaly bias in the equatorial western Pacific (EWP) is found to persist into the ENSO decay summer in the low-skill models, obstructing the formation of an anomalous anticyclone in the NWP. Further analysis shows that the warm EWP SST anomaly bias is possibly related to the excessive westward extension of cold tongue in these models, which increases climatological zonal SST gradient in the EWP. Under westerly wind anomalies, the larger climatological zonal SST gradient could lead to warmer zonal advections in the low-skill models than that in the high-skill models, which could lead to warm EWP SST anomaly bias in the low-skill models. And the warm EWP SST anomaly bias could strengthen westerly wind anomalies over the western Pacific by triggering convection and atmospheric Rossby waves, which, in turn, could maintain the warm SST anomaly bias in the EWP.


Author(s):  
Thomas T. Veblen ◽  
Kenneth R. Young

An important goal of this book has been to provide a comprehensive understanding of the physical geography and landscape origins of South America as important background to assessing the probabilities and consequences of future environmental changes. Such background is essential to informed discussions of environmental management and the development of policy options designed to prepare local, national, and international societies for future changes. A unifying theme of this book has been the elucidation of how natural processes and human activities have interacted in the distant and recent past to create the modern landscapes of the continent. This retrospective appreciation of how the current landscapes have been shaped by nature and humans will guide our discussion of possible future trajectories of South American environments. There is abundant evidence from all regions of South America, from Tierra del Fuego to the Isthmus of Panama, that environmental change, not stasis, has been the norm. Given that fact, the history, timing, and recurrence intervals of this dynamism are all crucial pieces of information. The antiquity and widespread distribution of changes associated with the indigenous population are now well established. Rates and intensities of changes related to indigenous activities varied widely, but even in regions formerly believed to have experienced little or no pre-European impacts we now recognize the effects of early humans on features such as soils and vegetation. Colonization by Europeans mainly during the sixteenth century modified or in some cases replaced indigenous land-use practices and initiated changes that have continued to the present. Complementing these broad historical treatments of human impacts, other chapters have examined in detail the environmental impacts of agriculture (chapter 18) and urbanism (chapter 20), and the disruptions associated with El Niño–Southern Oscillation events. The goal of this final synthesis is to identify the major drivers of change and to discuss briefly their likely impacts on South American environments and resources in the near and medium-term future. Our intent is not to make or defend predictions, but rather to identify broad causes and specific drivers of environmental change to inform discussions of policy options for mitigating undesirable changes and to facilitate potential societal adaptations to them.


2008 ◽  
Vol 26 (11) ◽  
pp. 3457-3476 ◽  
Author(s):  
A. S. Taschetto ◽  
I. Wainer

Abstract. The Community Climate Model (CCM3) from the National Center for Atmospheric Research (NCAR) is used to investigate the effect of the South Atlantic sea surface temperature (SST) anomalies on interannual to decadal variability of South American precipitation. Two ensembles composed of multidecadal simulations forced with monthly SST data from the Hadley Centre for the period 1949 to 2001 are analysed. A statistical treatment based on signal-to-noise ratio and Empirical Orthogonal Functions (EOF) is applied to the ensembles in order to reduce the internal variability among the integrations. The ensemble treatment shows a spatial and temporal dependence of reproducibility. High degree of reproducibility is found in the tropics while the extratropics is apparently less reproducible. Austral autumn (MAM) and spring (SON) precipitation appears to be more reproducible over the South America-South Atlantic region than the summer (DJF) and winter (JJA) rainfall. While the Inter-tropical Convergence Zone (ITCZ) region is dominated by external variance, the South Atlantic Convergence Zone (SACZ) over South America is predominantly determined by internal variance, which makes it a difficult phenomenon to predict. Alternatively, the SACZ over western South Atlantic appears to be more sensitive to the subtropical SST anomalies than over the continent. An attempt is made to separate the atmospheric response forced by the South Atlantic SST anomalies from that associated with the El Niño – Southern Oscillation (ENSO). Results show that both the South Atlantic and Pacific SSTs modulate the intensity and position of the SACZ during DJF. Particularly, the subtropical South Atlantic SSTs are more important than ENSO in determining the position of the SACZ over the southeast Brazilian coast during DJF. On the other hand, the ENSO signal seems to influence the intensity of the SACZ not only in DJF but especially its oceanic branch during MAM. Both local and remote influences, however, are confounded by the large internal variance in the region. During MAM and JJA, the South Atlantic SST anomalies affect the magnitude and the meridional displacement of the ITCZ. In JJA, the ENSO has relatively little influence on the interannual variability of the simulated rainfall. During SON, however, the ENSO seems to counteract the effect of the subtropical South Atlantic SST variations on convection over South America.


2019 ◽  
Vol 32 (11) ◽  
pp. 3279-3296 ◽  
Author(s):  
Lin Liu ◽  
Jianping Guo ◽  
Wen Chen ◽  
Renguang Wu ◽  
Lin Wang ◽  
...  

AbstractThe present study applies the empirical orthogonal function (EOF) method to investigate the interannual covariations of East Asian–Australian land precipitation (EAALP) during boreal winter based on observational and reanalysis datasets. The first mode of EAALP variations is characterized by opposite-sign anomalies between East Asia (EA) and Australia (AUS). The second mode features an anomaly pattern over EA similar to the first mode, but with a southwest–northeast dipole structure over AUS. El Niño–Southern Oscillation (ENSO) is found to be a primary factor in modulating the interannual variations of land precipitation over EA and western AUS. By comparison, the Indian Ocean subtropical dipole mode (IOSD) plays an important role in the formation of precipitation anomalies over northeastern AUS, mainly through a zonal vertical circulation spanning from the southern Indian Ocean (SIO) to northern AUS. In addition, the ENSO-independent cold sea surface temperature (SST) anomalies in the western North Pacific (WNP) impact the formation of the second mode. Using the atmospheric general circulation model ECHAM5, three 40-yr numerical simulation experiments differing in specified SST forcings verify the impacts of the IOSD and WNP SST anomalies. Further composite analyses indicate that the dominant patterns of EAALP variability are largely determined by the out-of-phase and in-phase combinations of ENSO and IOSD. These results suggest that in addition to ENSO, IOSD should be considered as another crucial factor influencing the EAALP variability during the boreal winter, which has large implications for improved prediction of EAALP land precipitation on the interannual time scale.


2020 ◽  
Vol 33 (2) ◽  
pp. 691-706 ◽  
Author(s):  
Xiaojuan Liu ◽  
David S. Battisti ◽  
Rachel H. White ◽  
Paul A. Baker

AbstractThe Cenozoic climate of tropical South America was fundamental to the development of its biota, the most biodiverse on Earth. No previous studies have explicitly addressed how the very different atmospheric composition and Atlantic geometry during the early Eocene (approximately 55 million years ago) may have affected South American climate. At that time, the Atlantic Ocean was approximately half of its current width and the CO2 concentration of Earth’s atmosphere ranged from ~550 to ~1500 ppm or even higher. Climate model simulations were performed to examine the effects of these major state changes on the climate of tropical South America. Reducing the width of the Atlantic by approximately half produces significant drying relative to modern climate. Drying is only partly offset by an enhancement of precipitation due to the higher CO2 of the early Eocene. The main mechanism for drier conditions is simple. Low-level air crosses the tropical Atlantic from North Africa in much less time for a narrower Atlantic (2 days) than for the modern Atlantic (~6 days); as a result, much less water is evaporated into the air and thus there is far lower moisture imported to the continent in the Eocene simulation than in the modern control. The progressive wetting (during the mid- to late Cenozoic) of the Amazon due to the widening Atlantic and the rising Andes, only partly offset by decreasing CO2 values, may have been partly responsible for the accumulating biodiversity of this region.


2007 ◽  
Vol 20 (11) ◽  
pp. 2691-2705 ◽  
Author(s):  
Wim-Paul Breugem ◽  
Wilco Hazeleger ◽  
Reindert J. Haarsma

Abstract A model study has been made of the mechanisms of the meridional mode in the northern tropical Atlantic (NTA) and the response to a doubling of atmospheric CO2. The numerical model consists of an atmospheric general circulation model (GCM) coupled to a passive mixed layer model for the ocean. Results from two simulations are shown: a control run with present-day atmospheric CO2 and a run with a doubled CO2 concentration. The results from the control run show that the wind–evaporation–SST (WES) feedback is confined to the deep NTA. Furthermore, the temporal evolution of the meridional mode is phase locked with the seasonal cycle of the climatological intertropical convergence zone (CITCZ). The WES feedback is positive in boreal winter and spring when the CITCZ is located close to the equator but negative in summer and fall when the CITCZ shifts toward the north of the deep NTA. Similarly, the damping of the SST anomalies in the deep NTA by moisture-induced evaporation anomalies is much stronger in summer and fall than in winter and spring, related to a change in anomalous moisture transport. The results from the double-CO2 run show a substantial northward shift of the CITCZ in boreal winter and spring but little change in summer and fall. The change in the CITCZ can be explained by strong warming at the high northern latitudes in combination with a seasonally dependent WES feedback with accompanying changes in moisture transport in the deep NTA. The latter indicates that the change in the CITCZ is subject to phase locking with the seasonal cycle of the CITCZ itself. The meridional mode in the double-CO2 run weakens by 10%–20%. This originates from the weakening of the positive WES feedback in the deep NTA, which in turn is attributed to the northward shift of the CITCZ; because in the double-CO2 run the CITCZ stays south of the deep NTA for a shorter time period, the positive WES feedback in the deep NTA acts less long, and damping by moisture-induced evaporation anomalies starts earlier than in the control run.


2014 ◽  
Vol 27 (14) ◽  
pp. 5285-5310 ◽  
Author(s):  
Karl Stein ◽  
Axel Timmermann ◽  
Niklas Schneider ◽  
Fei-Fei Jin ◽  
Malte F. Stuecker

Abstract One of the key characteristics of El Niño–Southern Oscillation (ENSO) is its synchronization to the annual cycle, which manifests in the tendency of ENSO events to peak during boreal winter. Current theory offers two possible mechanisms to account the for ENSO synchronization: frequency locking of ENSO to periodic forcing by the annual cycle, or the effect of the seasonally varying background state of the equatorial Pacific on ENSO’s coupled stability. Using a parametric recharge oscillator (PRO) model of ENSO, the authors test which of these scenarios provides a better explanation of the observed ENSO synchronization. Analytical solutions of the PRO model show that the annual modulation of the growth rate parameter results directly in ENSO’s seasonal variance, amplitude modulation, and 2:1 phase synchronization to the annual cycle. The solutions are shown to be applicable to the long-term behavior of the damped model excited by stochastic noise, which produces synchronization characteristics that agree with the observations and can account for the variety of ENSO synchronization behavior in state-of-the-art coupled general circulation models. The model also predicts spectral peaks at “combination tones” between ENSO and the annual cycle that exist in the observations and many coupled models. In contrast, the nonlinear frequency entrainment scenario predicts the existence of a spectral peak at the biennial frequency corresponding to the observed 2:1 phase synchronization. Such a peak does not exist in the observed ENSO spectrum. Hence, it can be concluded that the seasonal modulation of the coupled stability is responsible for the synchronization of ENSO events to the annual cycle.


1990 ◽  
Vol 13 ◽  
pp. 57-67
Author(s):  
Julio Buchmann ◽  
Lawrence E. Buja ◽  
Jan Paegle ◽  
Robert E. Dickinson

A series of real data experiments is performed with a general circulation model in order to ascertain the sensitivity of extended range rain forecasts over the Americas to the structure and magnitude of tropical heating anomalies. The emphasis is upon heat inputs over the tropical Atlantic which have shown particularly significant drying influences over North America in our prior simulations. The heating imposed in the prior experiments is compared to the condensation heating rates that naturally occur in the forecast model, and shown to be excessive by approximately a factor of two. Present experiments reduce the imposed anomaly by a factor of three, and also incorporate sea-surface temperature decreases over the eastern tropical Pacific Ocean. The new experimental results are in many ways consistent with our prior results. The dry North American response is statistically more significant than the South American response, and occurs at least as frequently in the different members of the experimental ensembles as in our prior experiments. The drying effect is accentuated by the presence of East Pacific cooling, but this does not appear to be the dominant influence. Over tropical South America, the Pacific and Atlantic modifications produce compensating influences, with the former dominating dominant, and allowing increased rainfall over the Amazon Basin.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Soo-Jin Sohn ◽  
WonMoo Kim

AbstractAn effective and reliable way for better predicting the seasonal Australasian and East Asian precipitation variability in a multi-model ensemble (MME) prediction system is newly designed, in relation to the performance of predicting El Niño-Southern Oscillation (ENSO) and its impact. While ENSO is a major predictability source of global and regional precipitation variation, the prediction skill of precipitation is not solely due to typical ENSO alone, of which variability and predictability exhibit strong seasonality. The first mode of ENSO variability has large variance with high prediction skill for boreal winter and small variance with low skill for spring and summer, while the second mode shows the opposite phase. The regional prediction skills for Australasian and East Asian precipitation also show such seasonal dependence, with low skill and large spread of individual models’ skills during the boreal spring to summer and high skill and small spread during winter. Using the individual models’ reproducibility of the association between ENSO and regional precipitation, the prediction skills of the MME with selected models can improve at regional levels, compared to those for all-inclusive MME, during boreal spring to summer. While typical ENSO as a predictability source may still dominate during boreal winter, consideration of complex ENSO structure and its diverse impact can lead to a better prediction of regional precipitation variability during non-mature phase of ENSO seasons.


Sign in / Sign up

Export Citation Format

Share Document