scholarly journals Thermodynamic Environments of Deep Convection in Atlantic Tropical Disturbances

2013 ◽  
Vol 70 (7) ◽  
pp. 1912-1928 ◽  
Author(s):  
Christopher A. Davis ◽  
David A. Ahijevych

Abstract Conditional composites of dropsondes deployed into eight tropical Atlantic weather systems during 2010 are analyzed. The samples are conditioned based on cloud-top temperature within 10 km of the dropsonde, the radius from the cyclonic circulation center of the disturbance, and the stage of system development toward tropical cyclogenesis. Statistical tests are performed to identify significant differences between composite profiles. Cold-cloud-region-composite profiles of virtual temperature deviations from a large-scale instantaneous average indicate enhanced static stability prior to genesis within 200 km of the center of circulation, with negative anomalies below 700 hPa and larger warm anomalies above 600 hPa. Moist static energy is enhanced in the middle troposphere in this composite mainly because of an increase in water vapor content. Prior to genesis the buoyancy of lifted parcels within 200 km of the circulation center is sharply reduced compared to the buoyancy of parcels farther from the center. These thermodynamic characteristics support the conceptual model of an altered mass flux profile prior to genesis that strongly favors convergence in the lower troposphere and rapid increase of circulation near the surface. It is also noted that the air–sea temperature difference is greatest in the inner core of the pregenesis composite, which suggests a means to preferentially initiate new convection in the inner core where the rotation is greatest.

2009 ◽  
Vol 137 (8) ◽  
pp. 2576-2591 ◽  
Author(s):  
Brandon Kerns ◽  
Edward Zipser

Abstract Using a subset of the relative vorticity maxima (VM) tracks described in Part I, large-scale environmental fields, cold cloud area, and rainfall area are used to discriminate between developing and nondeveloping tropical disturbances in the eastern North Pacific (EPAC) and Atlantic Oceans. By using a minimum cold cloud coverage requirement, the nondeveloping VM are limited to disturbances with enhanced low-level relative vorticity and widespread deep convection. Linear discriminant analysis is used to determine the overall discrimination and the relative importance of each predictor for each basin separately. It is important to distinguish the two basins because, for many predictors, the differences between the basins are greater than the differences between developing and nondeveloping VM in each basin. Using the parametric forecast method, there is greater discrimination and prediction skill in the EPAC than in the Atlantic. There are also significant differences between the two basins in terms of the degree of discrimination provided by each of the predictors. Surprisingly, the mean vertical wind shear magnitude is greater for EPAC developing VM than for EPAC nondeveloping VM. Incorporating the satellite-derived predictors marginally improves the potential forecast skill in the EPAC but not in the Atlantic. The prediction skill (Heidke skill score) of tropical cyclogenesis in the Atlantic is similar to what has been obtained in previous studies using cloud cluster tracks. There is greater predictive skill in the EPAC.


2009 ◽  
Vol 22 (9) ◽  
pp. 2389-2404 ◽  
Author(s):  
Mark D. Zelinka ◽  
Dennis L. Hartmann

Abstract Currently available satellite data can be used to track the response of clouds and humidity to intense precipitation events. A compositing technique centered in space and time on locations experiencing high rain rates is used to detail the characteristic evolution of several quantities measured from a suite of satellite instruments. Intense precipitation events in the convective tropics are preceded by an increase in low-level humidity. Optically thick cold clouds accompany the precipitation burst, which is followed by the development of spreading upper-level anvil clouds and an increase in upper-tropospheric humidity over a broader region than that occupied by the precipitation anomalies. The temporal separation between the convective event and the development of anvil clouds is about 3 h. The humidity increase at upper levels and the associated decrease in clear-sky longwave emission persist for many hours after the convective event. Large-scale vertical motions from reanalysis show a coherent evolution associated with precipitation events identified in an independent dataset: precipitation events begin with stronger upward motion anomalies in the lower troposphere, which then evolve toward stronger upward motion anomalies in the upper troposphere, in conjunction with the development of anvil clouds. Greater upper-tropospheric moistening and cloudiness are associated with larger-scale and better-organized convective systems, but even weaker, more isolated systems produce sustained upper-level humidity and clear-sky outgoing longwave radiation anomalies.


2010 ◽  
Vol 10 (22) ◽  
pp. 10753-10770 ◽  
Author(s):  
K. S. Law ◽  
F. Fierli ◽  
F. Cairo ◽  
H. Schlager ◽  
S. Borrmann ◽  
...  

Abstract. Trace gas and aerosol data collected in the tropical tropopause layer (TTL) between 12–18.5 km by the M55 Geophysica aircraft as part of the SCOUT-AMMA campaign over West Africa during the summer monsoon in August 2006 have been analysed in terms of their air mass origins. Analysis of domain filling back trajectories arriving over West Africa, and in the specific region of the flights, showed that the M55 flights were generally representative of air masses arriving over West Africa during the first 2 weeks of August, 2006. Air originating from the mid-latitude lower stratosphere was under-sampled (in the mid-upper TTL) whilst air masses uplifted from central Africa (into the lower TTL) were over-sampled in the latter part of the campaign. Signatures of recent (previous 10 days) origins were superimposed on the large-scale westward flow over West Africa. In the lower TTL, air masses were impacted by recent local deep convection over Africa at the level of main convective outflow (350 K, 200 hPa) and on certain days up to 370 K (100 hPa). Estimates of the fraction of air masses influenced by local convection vary from 10 to 50% depending on the method applied and from day to day during the campaign. The analysis shows that flights on 7, 8 and 11 August were more influenced by local convection than on 4 and 13 August allowing separation of trace gas and aerosol measurements into "convective" and "non-convective" flights. Strong signatures, particularly in species with short lifetimes (relative to CO2) like CO, NO and fine-mode aerosols were seen during flights most influenced by convection up to 350–365 K. Observed profiles were also constantly perturbed by uplift (as high as 39%) of air masses from the mid to lower troposphere over Asia, India, and oceanic regions resulting in import of clean oceanic (e.g. O3-poor) or polluted air masses from Asia (high O3, CO, CO2) into West Africa. Thus, recent uplift of CO2 over Asia may contribute to the observed positive CO2 gradients in the TTL over West Africa. This suggests a more significant fraction of younger air masses in the TTL and needs to taken into consideration in derivations of mean age of air. Transport of air masses from the mid-latitude lower stratosphere had an impact from the mid-TTL upwards (20–40% above 370 K) during the campaign period importing air masses with high O3 and NOy. Ozone profiles show a less pronounced lower TTL minimum than observed previously by regular ozonesondes at other tropical locations. Concentrations are less than 100 ppbv in the lower TTL and vertical gradients less steep than in the upper TTL. The air mass origin analysis and simulations of in-situ net photochemical O3 production, initialised with observations, suggest that the lower TTL is significantly impacted by uplift of O3 precursors (over Africa and Asia) leading to positive production rates (up to 2 ppbv per day) in the lower and mid TTL even at moderate NOx levels. Photochemical O3 production increases with higher NOx and H2O in air masses with O3 less than 150 ppbv.


2005 ◽  
Vol 18 (22) ◽  
pp. 4731-4751 ◽  
Author(s):  
K. M. Lau ◽  
H. T. Wu ◽  
Y. C. Sud ◽  
G. K. Walker

Abstract The sensitivity of tropical atmospheric hydrologic processes to cloud microphysics is investigated using the NASA Goddard Earth Observing System (GEOS) general circulation model (GCM). Results show that a faster autoconversion rate leads to (a) enhanced deep convection in the climatological convective zones anchored to tropical land regions; (b) more warm rain, but less cloud over oceanic regions; and (c) an increased convective-to-stratiform rain ratio over the entire Tropics. Fewer clouds enhance longwave cooling and reduce shortwave heating in the upper troposphere, while more warm rain produces more condensation heating in the lower troposphere. This vertical differential heating destabilizes the tropical atmosphere, producing a positive feedback resulting in more rain and an enhanced atmospheric water cycle over the Tropics. The feedback is maintained via secondary circulations between convective tower and anvil regions (cold rain), and adjacent middle-to-low cloud (warm rain) regions. The lower cell is capped by horizontal divergence and maximum cloud detrainment near the freezing–melting (0°C) level, with rising motion (relative to the vertical mean) in the warm rain region connected to sinking motion in the cold rain region. The upper cell is found above the 0°C level, with induced subsidence in the warm rain and dry regions, coupled to forced ascent in the deep convection region. It is that warm rain plays an important role in regulating the time scales of convective cycles, and in altering the tropical large-scale circulation through radiative–dynamic interactions. Reduced cloud–radiation feedback due to a faster autoconversion rate results in intermittent but more energetic eastward propagating Madden–Julian oscillations (MJOs). Conversely, a slower autoconversion rate, with increased cloud radiation produces MJOs with more realistic westward-propagating transients embedded in eastward-propagating supercloud clusters. The implications of the present results on climate change and water cycle dynamics research are discussed.


2010 ◽  
Vol 10 (6) ◽  
pp. 15485-15536 ◽  
Author(s):  
K. S. Law ◽  
F. Fierli ◽  
F. Cairo ◽  
H. Schlager ◽  
S. Borrmann ◽  
...  

Abstract. Trace gas and aerosol data collected in the tropical tropopause layer (TTL) between 12–18.5 km by the M55 Geophysica aircraft as part of the SCOUT-AMMA campaign over West Africa during the summer monsoon in August 2006 have been analysed in terms of their air mass origins. Analysis of domain filling back trajectories arriving over West Africa, and in the specific region of the flights, showed that the M55 flights were generally representative of air masses arriving over West Africa during the first 2 weeks of August, 2006. Air originating from the mid-latitude lower stratosphere was under-sampled (in the mid-upper TTL) whilst air masses uplifted from central Africa (into the lower TTL) were over-sampled in the latter part of the campaign. Signatures of recent (previous 10 days) origins were superimposed on the large-scale westerly flow over West Africa. In the lower TTL, air masses were impacted by recent local deep convection over Africa at the level of main convective outflow (350 K, 200 hPa) and on certain days up to 370 K (100 hPa). Estimates of the fraction of air masses influenced by local convection vary from 10 to 50% depending on the method applied and from day to day during the campaign. The analysis shows that flights on 7, 8 and 11 August were more influenced by local convection than on 4 and 13 August allowing separation of trace gas and aerosol measurements into ''convective'' and ''non-convective'' flights. Strong signatures, particularly in short-lived species like CO, NO and fine-mode aerosols were seen during flights most influenced by convection up to 350–365 K. Observed profiles were also constantly perturbed by uplift (as high as 39%) of air masses from the mid to lower troposphere over Asia, India, and oceanic regions resulting in import of clean oceanic (e.g., O3-poor) or polluted air masses from Asia (high O3, CO, CO2) into West Africa. Thus, recent uplift of CO2 over Asia may contribute to the observed positive CO2 gradients in the TTL over West Africa. This suggests a more significant fraction of younger air masses in the TTL making it difficult to derive mean age of air from average gradients. Transport of air masses from the mid-latitude lower stratosphere had an impact from the mid-TTL upwards (20–40% above 370 K) during the campaign period importing air masses with high O3 and NOy. Ozone profiles show a less pronounced lower TTL minimum than observed previously by regular ozonesondes at other tropical locations. Concentrations are less than 100 ppbv in the lower TTL and vertical gradients less steep than in the upper TTL. The air mass origin analysis and simulations of in-situ net photochemical O3 production, initialised with observations, suggest that the lower TTL is significantly impacted by uplift of O3 precursors (over Africa and Asia) leading to positive production rates (up to 2 ppbv per day) in the lower and mid TTL even at moderate NOx levels. Photochemical O3 production increases with higher NOx and H2O in air masses with O3 less than 150 ppbv.


2006 ◽  
Vol 63 (5) ◽  
pp. 1390-1409 ◽  
Author(s):  
Tim Li ◽  
Xuyang Ge ◽  
Bin Wang ◽  
Yongti Zhu

Abstract The cyclogenesis events associated with the tropical cyclone (TC) energy dispersion are simulated in a 3D model. A new TC with realistic dynamic and thermodynamic structures forms in the wake of a preexisting TC when a large-scale monsoon gyre or a monsoon shear line flow is present. Maximum vorticity generation appears in the planetary boundary layer (PBL) and the vorticity growth exhibits an oscillatory development. This oscillatory growth is also seen in the observed rainfall and cloud-top temperature fields. The diagnosis of the model output shows that the oscillatory development is attributed to the discharge and recharge of the PBL moisture and its interaction with convection and circulation. The moisture–convection feedback regulates the TC development through controlling the atmospheric stratification, raindrop-induced evaporative cooling and downdraft, PBL divergence, and vorticity generation. On one hand, ascending motion associated with deep convection transports moisture upward and leads to the discharge of PBL moisture and a convectively stable stratification. On the other hand, the convection-induced raindrops evaporate, leading to midlevel cooling and downdraft. The downdraft further leads to dryness and a reduction of equivalent potential temperature. This reduction along with the recharge of PBL moisture due to surface evaporation leads to reestablishment of a convectively unstable stratification and thus new convection. Sensitivity experiments with both a single mesh (with a 15-km resolution) and a nested mesh (with a 5-km resolution in the inner mesh) indicate that TC energy dispersion alone in a resting environment does not lead to cyclogenesis, suggesting the important role of the wave train–mean flow interaction. A proper initial condition for background wind and moisture fields is crucial for maintaining a continuous vorticity growth through the multioscillatory phases.


2010 ◽  
Vol 67 (6) ◽  
pp. 1711-1729 ◽  
Author(s):  
Zhuo Wang ◽  
M. T. Montgomery ◽  
T. J. Dunkerton

Abstract The formation of pre–Hurricane Felix (2007) in a tropical easterly wave is examined in a two-part study using the Weather Research and Forecasting (WRF) model with a high-resolution nested grid configuration that permits the representation of cloud system processes. The simulation commences during the wave stage of the precursor African easterly-wave disturbance. Here the simulated and observed developments are compared, while in Part II of the study various large-scale analyses, physical parameterizations, and initialization times are explored to document model sensitivities. In this first part the authors focus on the wave/vortex morphology, its interaction with the adjacent intertropical convergence zone complex, and the vorticity balance in the neighborhood of the developing storm. Analysis of the model simulation points to a bottom-up development process within the wave critical layer and supports the three new hypotheses of tropical cyclone formation proposed recently by Dunkerton, Montgomery, and Wang. It is shown also that low-level convergence associated with the ITCZ helps to enhance the wave signal and extend the “wave pouch” from the jet level to the top of the atmospheric boundary layer. The region of a quasi-closed Lagrangian circulation within the wave pouch provides a focal point for diabatic merger of convective vortices and their vortical remnants. The wave pouch serves also to protect the moist air inside from dry air intrusion, providing a favorable environment for sustained deep convection. Consistent with the authors’ earlier findings, the tropical storm forms near the center of the wave pouch via system-scale convergence in the lower troposphere and vorticity aggregation. Components of the vorticity balance are shown to be scale dependent, with the immediate effects of cloud processes confined more closely to the storm center than the overturning Eliassen circulation induced by diabatic heating, the influence of which extends to larger radii.


2019 ◽  
Vol 9 (23) ◽  
pp. 4992 ◽  
Author(s):  
Soldatenko

Research findings suggest that water (hydrological) cycle of the earth intensifies in response to climate change, since the amount of water that evaporates from the ocean and land to the atmosphere and the total water content in the air will increase with temperature. In addition, climate change affects the large-scale atmospheric circulation by, for example, altering the characteristics of extratropical transient eddies (cyclones), which play a dominant role in the meridional transport of heat, moisture, and momentum from tropical to polar latitudes. Thus, climate change also affects the planetary hydrological cycle by redistributing atmospheric moisture around the globe. Baroclinic instability, a specific type of dynamical instability of the zonal atmospheric flow, is the principal mechanism by which extratropical cyclones form and evolve. It is expected that, due to global warming, the two most fundamental dynamical quantities that control the development of baroclinic instability and the overall global atmospheric dynamics—the parameter of static stability and the meridional temperature gradient (MTG)—will undergo certain changes. As a result, climate change can affect the formation and evolution of transient extratropical eddies and, therefore, macro-exchange of heat and moisture between low and high latitudes and the global water cycle as a whole. In this paper, we explore the effect of changes in the static stability parameter and MTG caused by climate change on the annual-mean eddy meridional moisture flux (AMEMF), using the two classical atmospheric models: the mid-latitude f-plane model and the two-layer β-plane model. These models are represented in two versions: “dry,” which considers the static stability of dry air alone, and “moist,” in which effective static stability is considered as a combination of stability of dry and moist air together. Sensitivity functions were derived for these models that enable estimating the influence of infinitesimal perturbations in the parameter of static stability and MTG on the AMEMF and on large-scale eddy dynamics characterized by the growth rate of unstable baroclinic waves of various wavelengths. For the base climate change scenario, in which the surface temperature increases by 1 °C and warming of the upper troposphere outpaces warming of the lower troposphere by 2 °C (this scenario corresponds to the observed warming trend), the response of the mass-weighted vertically averaged annual mean MTG is -0.2 ℃ per 1000 km. The dry static stability increases insignificantly relative to the reference climate state, while on the other hand, the effective static stability decreases by more than 5.4%. Assuming that static stability of the atmosphere and the MTG are independent of each other (using One-factor-at-a-time approach), we estimate that the increase in AMEMF caused by change in MTG is about 4%. Change in dry static stability has little effect on AMEMF, while change in effective static stability leads to an increase in AMEMF of about 5%. Thus, neglecting atmospheric moisture in calculations of the atmospheric static stability leads to tangible differences between the results obtained using the dry and moist models. Moist models predict ~9% increase in AMEMF due to global warming. Dry models predict ~4% increase in AMEMF solely because of the change in MTG. For the base climate change scenario, the average temperature of the lower troposphere (up to ~4 km), in which the atmospheric moisture is concentrated, increases by ~1.5 ℃. This leads to an increase in specific humidity of about 10.5%. Thus, since both AMEMF and atmospheric water vapor content increase due to the influence of climate change, a rather noticeable restructuring of the global water cycle is expected.


2010 ◽  
Vol 23 (7) ◽  
pp. 1837-1853 ◽  
Author(s):  
Eric Tromeur ◽  
William B. Rossow

Abstract To better understand the interaction between tropical deep convection and the Madden–Julian oscillation (MJO), tropical cloud regimes are defined by cluster analysis of International Satellite Cloud Climatology Project (ISCCP) cloud-top pressure—optical thickness joint distributions from the D1 dataset covering 21.5 yr. An MJO index based solely on upper-level wind anomalies is used to study variations of the tropical cloud regimes. The MJO index shows that MJO events are present almost all the time; instead of the MJO event being associated with “on or off” deep convection, it is associated with weaker or stronger mesoscale organization of deep convection. Atmospheric winds and humidity from NCEP–NCAR reanalysis 1 are used to characterize the large-scale dynamics of the MJO; the results show that the large-scale motions initiate an MJO event by moistening the lower troposphere by horizontal advection. Increasingly strong convection transports moisture into the upper troposphere, suggesting a reinforcement of the convection itself. The change of convection organization shown by the cloud regimes indicates a strong interaction between the large-scale circulation and deep convection. The analysis is extended to the complete atmospheric diabatic heating by precipitation, radiation, and surface fluxes. The wave organizes stronger convective heating of the tropical atmosphere, which results in stronger winds, while there is only a passive response of the surface, directly linked to cloud radiative effects. Overall, the results suggest that an MJO event is an amplification of large-scale wave motions by stronger convective heating, which results from a dynamic reorganization of scattered deep convection into more intense mesoscale systems.


2007 ◽  
Vol 64 (2) ◽  
pp. 381-400 ◽  
Author(s):  
Boualem Khouider ◽  
Andrew J. Majda

Abstract Observations in the Tropics point to the important role of three cloud types, congestus, stratiform, and deep convective clouds, besides ubiquitous shallow boundary layer clouds for both the climatology and large-scale organized anomalies such as convectively coupled Kelvin waves, two-day waves, and the Madden–Julian oscillation. Recently, the authors have developed a systematic model convective parameterization highlighting the dynamic role of the three cloud types through two baroclinic modes of vertical structure: a deep convective heating mode and a second mode with lower troposphere heating and cooling corresponding respectively to congestus and stratiform clouds. The model includes both a systematic moisture equation where the lower troposphere moisture increases through detrainment of shallow cumulus clouds, evaporation of stratiform rain, and moisture convergence and decreases through deep convective precipitation and also a nonlinear switch that favors either deep or congestus convection depending on whether the lower middle troposphere is moist or dry. Here these model convective parameterizations are applied to a 40 000-km periodic equatorial ring without rotation, with a background sea surface temperature (SST) gradient and realistic radiative cooling mimicking a tropical warm pool. Both the emerging “Walker cell” climatology and the convectively coupled wave fluctuations are analyzed here while various parameters in the model are varied. The model exhibits weak congestus moisture coupled waves outside the warm pool in a turbulent bath that intermittently amplify in the warm pool generating convectively coupled moist gravity wave trains propagating at speeds ranging from 15 to 20 m s−1 over the warm pool, while retaining a classical Walker cell in the mean climatology. The envelope of the deep convective events in these convectively coupled wave trains often exhibits large-scale organization with a slower propagation speed of 3–5 m s−1 over the warm pool and adjacent region. Occasional much rarer intermittent deep convection also occurs outside the warm pool. The realistic parameter regimes in the multicloud model are identified as those with linearized growth rates for large scale instabilities roughly in the range of 0.5 K day−1.


Sign in / Sign up

Export Citation Format

Share Document