A Physically Based Daily Hydrometeorological Model for Complex Mountain Terrain

2009 ◽  
Vol 10 (6) ◽  
pp. 1430-1446 ◽  
Author(s):  
Ryan J. MacDonald ◽  
James M. Byrne ◽  
Stefan W. Kienzle

Abstract This paper describes the continued development of the physically based hydrometeorological model Generate Earth Systems Science input (GENESYS) and its application in simulating snowpack in the St. Mary (STM) River watershed, Montana. GENESYS is designed to operate a high spatial and temporal resolution over complex mountainous terrain. The intent of this paper is to assess the performance of the model in simulating daily snowpack and the spatial extent of snow cover over the St. Mary River watershed. A new precipitation estimation method that uses snowpack telemetry (SNOTEL) and snow survey data is presented and compared with two other methods, including Parameter-elevation Regressions on Independent Slopes Model (PRISM) precipitation data. A method for determining daily temperature lapse rates from NCEP reanalysis data is also presented and the effect of temperature lapse rate on snowpack simulations is determined. Simulated daily snowpack values compare well with observed values at the Many Glacier SNOTEL site, with varying degrees of accuracy, dependent on the method used to estimate precipitation. The spatial snow cover extent compares well with Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover products for three dates selected to represent snow accumulation and ablation periods.

2012 ◽  
Vol 13 (1) ◽  
pp. 204-222 ◽  
Author(s):  
Maheswor Shrestha ◽  
Lei Wang ◽  
Toshio Koike ◽  
Yongkang Xue ◽  
Yukiko Hirabayashi

Abstract In this study, a distributed biosphere hydrological model with three-layer energy-balance snow physics [an improved version of the Water and Energy Budget–based Distributed Hydrological Model (WEB-DHM-S)] is applied to the Dudhkoshi region of the eastern Nepal Himalayas to estimate the spatial distribution of snow cover. Simulations are performed at hourly time steps and 1-km spatial resolution for the 2002/03 snow season during the Coordinated Enhanced Observing Period (CEOP) third Enhanced Observing Period (EOP-3). Point evaluations (snow depth and upward short- and longwave radiation) at Pyramid (a station of the CEOP Himalayan reference site) confirm the vertical-process representations of WEB-DHM-S in this region. The simulated spatial distribution of snow cover is evaluated with the Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day maximum snow-cover extent (MOD10A2), demonstrating the model’s capability to accurately capture the spatiotemporal variations in snow cover across the study area. The qualitative pixel-to-pixel comparisons for the snow-free and snow-covered grids reveal that the simulations agree well with the MODIS data to an accuracy of 90%. Simulated nighttime land surface temperatures (LST) are comparable to the MODIS LST (MOD11A2) with mean absolute error of 2.42°C and mean relative error of 0.77°C during the study period. The effects of uncertainty in air temperature lapse rate, initial snow depth, and snow albedo on the snow-cover area (SCA) and LST simulations are determined through sensitivity runs. In addition, it is found that ignoring the spatial variability of remotely sensed cloud coverage greatly increases bias in the LST and SCA simulations. To the authors’ knowledge, this work is the first to adopt a distributed hydrological model with a physically based multilayer snow module to estimate the spatial distribution of snow cover in the Himalayan region.


2013 ◽  
Vol 17 (10) ◽  
pp. 3921-3936 ◽  
Author(s):  
M. Ménégoz ◽  
H. Gallée ◽  
H. W. Jacobi

Abstract. We applied a Regional Climate Model (RCM) to simulate precipitation and snow cover over the Himalaya, between March 2000 and December 2002. Due to its higher resolution, our model simulates a more realistic spatial variability of wind and precipitation than those of the reanalysis of the European Centre of Medium range Weather Forecast (ECMWF) used as lateral boundaries. In this region, we found very large discrepancies between the estimations of precipitation provided by reanalysis, rain gauges networks, satellite observations, and our RCM simulation. Our model clearly underestimates precipitation at the foothills of the Himalaya and in its eastern part. However, our simulation provides a first estimation of liquid and solid precipitation in high altitude areas, where satellite and rain gauge networks are not very reliable. During the two years of simulation, our model resembles the snow cover extent and duration quite accurately in these areas. Both snow accumulation and snow cover duration differ widely along the Himalaya: snowfall can occur during the whole year in western Himalaya, due to both summer monsoon and mid-latitude low pressure systems bringing moisture into this region. In Central Himalaya and on the Tibetan Plateau, a much more marked dry season occurs from October to March. Snow cover does not have a pronounced seasonal cycle in these regions, since it depends both on the quite variable duration of the monsoon and on the rare but possible occurrence of snowfall during the extra-monsoon period.


2013 ◽  
Vol 6 (1) ◽  
pp. 791-840 ◽  
Author(s):  
S. Gubler ◽  
S. Endrizzi ◽  
S. Gruber ◽  
R. S. Purves

Abstract. Before operational use or for decision making, models must be validated, and the degree of trust in model outputs should be quantified. Often, model validation is performed at single locations due to the lack of spatially-distributed data. Since the analysis of parametric model uncertainties can be performed independently of observations, it is a suitable method to test the influence of environmental variability on model evaluation. In this study, the sensitivities and uncertainty of a physically-based mountain permafrost model are quantified within an artificial topography consisting of different elevations and exposures combined with six ground types characterized by their hydraulic properties. The analyses performed for all combinations of topographic factors and ground types allowed to quantify the variability of model sensitivity and uncertainty within mountain regions. We found that modeled snow duration considerably influences the mean annual ground temperature (MAGT). The melt-out day of snow (MD) is determined by processes determining snow accumulation and melting. Parameters such as the temperature and precipitation lapse rate and the snow correction factor have therefore a great impact on modeled MAGT. Ground albedo changes MAGT from 0.5 to 4°C in dependence of the elevation, the aspect and the ground type. South-exposed inclined locations are more sensitive to changes in ground albedo than north-exposed slopes since they receive more solar radiation. The sensitivity to ground albedo increases with decreasing elevation due to shorter snow cover. Snow albedo and other parameters determining the amount of reflected solar radiation are important, changing MAGT at different depths by more than 1°C. Parameters influencing the turbulent fluxes as the roughness length or the dew temperature are more sensitive at low elevation sites due to higher air temperatures and decreased solar radiation. Modeling the individual terms of the energy balance correctly is hence crucial in any physically-based permafrost model, and a separate evaluation of the energy fluxes could substantially improve the results of permafrost models. The sensitivity in the hydraulic properties change considerably for different ground types: rock or clay for instance are not sensitive while gravel or peat, accurate measurements of the hydraulic properties could significantly improve modeled ground temperatures. Further, the discretization of ground, snow and time have an impact on modeled MAGT that cannot be neglected (more than 1°C for several discretization parameters). We show that the temporal resolution should be at least one hour to ensure errors less than 0.2°C in modeled MAGT, and the uppermost ground layer should at most be 20 mm thick. Within the topographic setting, the total parametric output uncertainties expressed as the standard deviation of the Monte Carlo model simulations range from 0.1 to 0.5°C for clay, silt and rock, and from 0.1 to 0.8°C for peat, sand and gravel. These uncertainties are comparable to the variability of ground surface temperatures measured within 10 m × 10 m grids in Switzerland. The increased uncertainties for sand, peat and gravel is largely due to the high hydraulic conductivity.


1997 ◽  
Vol 25 ◽  
pp. 232-236 ◽  
Author(s):  
A. Rango

The cryosphere is represented in some hydrological models by the arcal extent of snow cover, a variable that has been operationally available in recent years through remote sensing. In particular, the snowmelt runoff model (SRM) requires the remotely sensed snow-cover extent as a major input variable. The SRM is well-suited for simulating the hydrological response of a basin to hypothetical climate change because it is a non-calibrated model. In order to run the SRM in a climate-change mode, the response of the areal snow cover to a change in climate is critical, and must be calculated as a function of elevation, precipitation, temperature, and snow-water equivalent. For the snowmelt-runoff season, the effect of climate change on conditions in the winter months has a major influence. In a warmer climate, winter may experience more rain vs snow events, and more periods of winter snowmelt that reduce the snow water equivalent present in the basin at the beginning of spring snow melt. As a result, the spring snowmelt runoff under conditions of climate warming will be affected not only by different temperatures and precipitation, but also by a different snow cover with a changed depletion rate. A new radiation-based version of the SRM is under development that will also take changes in cloudiness and humidity into account, making climate-change studies of the cryosphere even more physically based.


2012 ◽  
Vol 6 (6) ◽  
pp. 4637-4671
Author(s):  
K. Klehmet ◽  
B. Geyer ◽  
B. Rockel

Abstract. This study analyzes the added value of a regional climate model hindcast of CCLM compared to global reanalyses in providing a reconstruction of recent past snow water equivalent (SWE) for Siberia. Consistent regional climate data in time and space is necessary due to lack of station data in that region. We focus on SWE since it represents an important snow cover parameter in a region where snow has the potential to feed back to the climate of the whole Northern Hemisphere. The simulation was performed in a 50 km grid spacing for the period 1948 to 2010 using NCEP Reanalysis 1 as boundary forcing. Daily observational reference data for the period of 1987–2010 was obtained by the satellite derived SWE product of ESA DUE GlobSnow that enables a large scale assessment. The analyses includes comparisons of the distribution of snow cover extent, example time series of monthly SWE for January and April, regional characteristics of long-term monthly mean, standard deviation and temporal correlation averaged over subregions. SWE of CCLM is compared against the SWE information of NCEP-R1 itself and three more reanalyses (NCEP-R2, NCEP-CFSR, ERA-Interim). We demonstrate a significant added value of the CCLM hindcast during snow accumulation period shown for January for many subregions compared to SWE of NCEP-R1. NCEP-R1 mostly underestimates SWE during whole snow season. CCLM overestimates SWE compared to the satellite-derived product during April – a month representing the beginning of snow melt in southern regions. We illustrate that SWE of the regional hindcast is more consistent in time than ERA-Interim and NCEP-R2 and thus add realistic detail.


2010 ◽  
Vol 7 (3) ◽  
pp. 3189-3211 ◽  
Author(s):  
H.-Y. Li ◽  
J. Wang

Abstract. An energy balance method and remote sensing data were used to simulate snow distribution and melt in an alpine watershed in Northwestern China within a complete snow accumulation-melt period. Spatial energy budgets were simulated using the meteorological observations and digital elevation model of the watershed. A linear interpolation method was used to discriminate daily snow cover area under cloudy conditions, using Moderate Resolution Imaging Spectroradiometer data. Hourly snow distribution and melt, snow cover extent, and daily discharge were included in the simulated results. The bias error between field snow water equivalent samplings and simulated results is −2.1 cm, and Root Mean Square Error is 33.9 cm. The Nash and Sutcliffe efficiency statistic (R2) between measured and simulated discharges is 0.673, and the volume difference (Dv) is 3.9%. Using the method introduced in this article, modeling spatial snow distribution and melt runoff will become relatively convenient.


2018 ◽  
Author(s):  
Katrina E. Bennett ◽  
Jessica E. Cherry ◽  
Ben Balk ◽  
Scott Lindsey

Abstract. Remotely sensed snow cover observations provide an opportunity to improve operational snowmelt and streamflow forecasting in remote regions. This is particularly true in Alaska, where remote basins and a spatially and temporally sparse gaging network plague efforts to understand and forecast the hydrology of subarctic boreal watersheds and where climate change is leading to rapid shifts in watershed function. In this study, the operational framework employed by the US National Weather Service, including the Alaska Pacific River Forecast Center, is adapted to integrate Moderate Resolution Imaging Spectroradiometer (MODIS) remotely sensed observations of snow cover extent (SCE) to determine if these data improve streamflow forecasts in Interior Alaskan river basins. Two versions of MODIS fractional SCE are tested in this study: the MODIS 10A1 (MOD10A1), and the MODIS Snow Cover Area and Grain size (MODSCAG) product. Observed runoff is compared to simulated runoff to calibrate both iterations of the model. MODIS-forced runs have improved snow depletion timing compared with snow telemetry sites in the basins, with discernable increases in skill for the streamflow simulations. The MODSCAG SCE version provides moderate increases in skill, but is similar to the MOD10A1 results in these watersheds. The basins with the greatest improvement in streamflow simulations have the sparsest streamflow observations. Considering the numerous low-quality gages (discontinuous, short, or unreliable) and ungaged systems throughout the high latitude regions of the globe, this result is of great value and indicates the utility of the MODIS SCE data in these regions. Additionally, while improvements in predicted discharge values are subtle, the snow model better represents the physical conditions of the snow pack and therefore provides more robust simulations, which are consistent with the US National Weather Service's move toward a physically-based National Water Model. Physically-based models may be more capable of adapting to changing climates than statistical models tuned to past regimes. This work provides direction for both the Alaska Pacific River Forecast Center and other forecast centers across the US to implement remote sensing observations within their operational framework, to refine the representation of snow, and to improve streamflow forecasting skill in basins with few or poor-quality observations.


2021 ◽  
Vol 13 (16) ◽  
pp. 3212
Author(s):  
Youyan Jiang ◽  
Wentao Du ◽  
Jizu Chen ◽  
Wenxuan Sun

Precipitation and snow/ice melt water are the primary water sources in inland river basins in arid areas, and these are sensitive to global climate change. A dataset of snow cover in the upstream region of the Shule River catchment was established using MOD10A2 data from 2000 to 2019, and the spatiotemporal variations in the snow cover and its meteorological, runoff, and topographic impacts were analyzed. The results show that the spatial distribution of the snow cover is highly uneven owing to altitude differences. The snow cover in spring and autumn is mainly concentrated along the edges of the region, whereas that in winter and summer is mainly distributed in the south. Notable differences in snow accumulation and melting are observed at different altitudes, and the annual variation in the snow cover extent shows bimodal characteristics. The correlation between the snow cover extent and runoff is most significant in April. The snow cover effectively replenishes the runoff at higher altitudes (3300–4900 m), but this contribution weakens with increasing altitude (>4900 m). The regions with a high snow cover frequency are mostly concentrated at high altitudes. Regions with slopes of <30° show a strong correlation with the snow cover frequency, which decreases for slopes of >45°. The snow cover frequency and slope aspect show symmetrical changes.


1997 ◽  
Vol 25 ◽  
pp. 232-236
Author(s):  
A. Rango

The cryosphere is represented in some hydrological models by the areal extent of snow cover, a variable that has been operationally available in recent years through remote sensing. In particular, the snowmelt–runoff model (SRM) requires the remotely sensed snow-cover extent as a major input variable. The SRM is well-suited for simulating the hydrological response of a basin to hypothetical climate change because it is a non-calibrated model. In order to run the SRM in a climate-change mode, the response of the areal snow cover to a change in climate is critical, and must be calculated as a function of elevation, precipitation, temperature, and snow-water equivalent. For the snowmelt-runoff season, the effect of climate change on conditions in the winter months has a major influence. In a warmer climate, winter may experience more rain vs snow events, and more periods of winter snowmelt that reduce the snow water equivalent present in the basin at the beginning of spring snowmelt. As a result, the spring snowmelt runoff under conditions of climate warming will be affected not only by different temperatures and precipitation, but also by a different snow cover with a changed depletion rate. A new radiation-based version of the SRM is under development that will also take changes in cloudiness and humidity into account, making climate-change studies of the cryosphere even more physically based.


Sign in / Sign up

Export Citation Format

Share Document