scholarly journals Mean Dynamic Topography of the Ocean Derived from Satellite and Drifting Buoy Data Using Three Different Techniques*

2009 ◽  
Vol 26 (9) ◽  
pp. 1910-1919 ◽  
Author(s):  
Nikolai Maximenko ◽  
Peter Niiler ◽  
Luca Centurioni ◽  
Marie-Helene Rio ◽  
Oleg Melnichenko ◽  
...  

Abstract Presented here are three mean dynamic topography maps derived with different methodologies. The first method combines sea level observed by the high-accuracy satellite radar altimetry with the geoid model of the Gravity Recovery and Climate Experiment (GRACE), which has recently measured the earth’s gravity with unprecedented spatial resolution and accuracy. The second one synthesizes near-surface velocities from a network of ocean drifters, hydrographic profiles, and ocean winds sorted according to the horizontal scales. In the third method, these global datasets are used in the context of the ocean surface momentum balance. The second and third methods are used to improve accuracy of the dynamic topography on fine space scales poorly resolved in the first method. When they are used to compute a multiyear time-mean global ocean surface circulation on a 0.5° horizontal resolution, both contain very similar, new small-scale midocean current patterns. In particular, extensions of western boundary currents appear narrow and strong despite temporal variability and exhibit persistent meanders and multiple branching. Also, the locations of the velocity concentrations in the Antarctic Circumpolar Current become well defined. Ageostrophic velocities reveal convergent zones in each subtropical basin. These maps present a new context in which to view the continued ocean monitoring with in situ instruments and satellites.

2020 ◽  
Author(s):  
Frank Siegismund ◽  
Xanthi Oikonomidou ◽  
Philipp Zingerle

<p>The Dynamic ocean Topography (DT) describes the deviation of the true ocean surface from a hypothetical equilibrium state ocean at rest forced by gravity alone. With the geostrophic surface currents obtained from its gradients the DT is an essential parameter for describing the ocean dynamics. Observation-based global temporal Mean geodetic DTs (MDTs) are obtained from the difference of altimetric Mean Sea Surface (MSS) and the geoid height, that equipotential surface of gravity closest to the ocean surface.</p><p>The geoid is provided either as a satellite-only, or a combined model including in addition gravity anomalies derived from satellite altimetry and ground data. In recent years the focus was on satellite-only models, produced from new space-born observations obtained from the Gravity Recovery and Climate Experiment (GRACE) and Gravity field and Ocean Circulation Explorer (GOCE) satellite missions. Moreover, combined geoid models are only cautiously used for MDT calculation, since it is still in question to what extent the gravity information obtained from altimetry is distorted by the MDT information included therein and how this translates into errors of the MDT.</p><p>Here we want to concentrate on MDT models based on recent combined geoid models. An assessment is provided based on comparisons to near-surface drifter data from the Global Drifter Program (GDP). Besides providing a general, global assessment, we focus on signal content on small scales, addressing mainly two questions: 1) Do MDTs obtained from combined geoid models contain signal for scales smaller than resolvable by the<br>satellite-only models? 2) Is there a maximum resolution beyond which no signal is detectable?</p><p>Until recently, these questions couldn't be answered since low resolution MDTs usually contained strong wavy-structured errors and thus needed a strong spatial filtering thereby killing the smallest scales resolved in the MDT. These errors, which worsen with lower resolution, are caused by Gibbs effects provoked by imperfections in bringing the high resolution ocean-only MSS models into spectral consistency with the much lower resolved global geoid model. A new methodology, however, improves the necessary globalization of the MSS. After subtraction of the geoid model, subsequent cutting-off the signal beyond a specific spherical harmonic degree and order (d/o) results in an MDT without any Gibbs effects, also for low resolution models.</p><p>To answer the questions posed above applying the new methodology, the scale-dependent signal in MDTs for different geoid models is presented for a list of cut off d/os. To minimize the influence of noise on the results we concentrate on strong signal Western Boundary Currents like the Gulf Stream and the Kuroshio. For the Gulf Stream results of a high resolution hydrodynamic model are available and presented as an independent method to estimate the scale dependent signal.</p>


2019 ◽  
Vol 36 (7) ◽  
pp. 1255-1266 ◽  
Author(s):  
Mathieu Hamon ◽  
Eric Greiner ◽  
Pierre-Yves Le Traon ◽  
Elisabeth Remy

AbstractSatellite altimetry is one of the main sources of information used to constrain global ocean analysis and forecasting systems. In addition to in situ vertical temperature and salinity profiles and sea surface temperature (SST) data, sea level anomalies (SLA) from multiple altimeters are assimilated through the knowledge of a surface reference, the mean dynamic topography (MDT). The quality of analyses and forecasts mainly depends on the availability of SLA observations and on the accuracy of the MDT. A series of observing system evaluations (OSEs) were conducted to assess the relative importance of the number of assimilated altimeters and the accuracy of the MDT in a Mercator Ocean global 1/4° ocean data assimilation system. Dedicated tools were used to quantify impacts on analyzed and forecast sea surface height and temperature/salinity in deeper layers. The study shows that a constellation of four altimeters associated with a precise MDT is required to adequately describe and predict upper-ocean circulation in a global 1/4° ocean data assimilation system. Compared to a one-altimeter configuration, a four-altimeter configuration reduces the mean forecast error by about 30%, but the reduction can reach more than 80% in western boundary current (WBC) regions. The use of the most recent MDT updates improves the accuracy of analyses and forecasts to the same extent as assimilating a fourth altimeter.


2020 ◽  
Vol 7 ◽  
Author(s):  
Ainhoa Caballero ◽  
Sandrine Mulet ◽  
Nadia Ayoub ◽  
Ivan Manso-Narvarte ◽  
Xabier Davila ◽  
...  

Satellite altimeters provide continuous information of the sea level variability and mesoscale processes for the global ocean. For estimating the sea level above the geoid and monitoring the full ocean dynamics from altimeters measurements, a key reference surface is needed: The Mean Dynamic Topography (MDT). However, in coastal areas, where, in situ measurements are sparse and the typical scales of the motion are generally smaller than in the deep ocean, the global MDT solutions are less accurate than in the open ocean, even if significant improvement has been done in the past years. An opportunity to fill in this gap has arisen with the growing availability of long time-series of high-resolution HF radar surface velocity measurements in some areas, such as the south-eastern Bay of Biscay. The prerequisite for the computation of a coastal MDT, using the newly available data of surface velocities, was to obtain a robust methodology to remove the ageostrophic signal from the HF radar measurements, in coherence with the scales resolved by the altimetry. To that end, we first filtered out the tidal and inertial motions, and then, we developed and tested a method that removed the Ekman component and the remaining divergent part of the flow. A regional high-resolution hindcast simulation was used to assess the method. Then, the processed HF radar geostrophic velocities were used in synergy with additional in situ data, altimetry, and gravimetry to compute a new coastal MDT, which shows significant improvement compared with the global MDT. This study showcases the benefit of combining satellite data with continuous, high-frequency, and synoptic in situ velocity data from coastal radar measurements; taking advantage of the different scales resolved by each of the measuring systems. The integrated analysis of in situ observations, satellite data, and numerical simulations has provided a further step in the understanding of the local ocean processes, and the new MDT a basis for more reliable monitoring of the study area. Recommendations for the replicability of the methodology in other coastal areas are also provided. Finally, the methods developed in this study and the more accurate regional MDT could benefit present and future high-resolution altimetric missions.


2021 ◽  
Vol 14 (4) ◽  
pp. 2011-2028
Author(s):  
Qing Li ◽  
Luke Van Roekel

Abstract. A multiscale modeling approach for studying the ocean surface turbulent mixing is explored by coupling an ocean general circulation model (GCM) MPAS-Ocean with the Parallelized Large Eddy Simulation Model (PALM). The coupling approach is similar to the superparameterization approach that has been used to represent the effects of deep convection in atmospheric GCMs. However, the focus of this multiscale modeling approach is on the small-scale turbulent mixing and their interactions with the larger-scale processes in the ocean, so that a more flexible coupling strategy is used. To reduce the computational cost, a customized version of PALM is ported on the general-purpose graphics processing unit (GPU) with OpenACC, achieving 10–16 times overall speedup as compared to running on a single CPU. Even with the GPU-acceleration technique, a superparameterization-like approach to represent the ocean surface turbulent mixing in GCMs using embedded high fidelity and three-dimensional large eddy simulations (LESs) over the global ocean is still computationally intensive and infeasible for long simulations. However, running PALM regionally on selected MPAS-Ocean grid cells is shown to be a promising approach moving forward. The flexible coupling between MPAS-Ocean and PALM allows further exploration of the interactions between the ocean surface turbulent mixing and larger-scale processes, as well as future development and improvement of ocean surface turbulent mixing parameterizations for GCMs.


2011 ◽  
Vol 50 (2) ◽  
pp. 379-398 ◽  
Author(s):  
Axel Andersson ◽  
Christian Klepp ◽  
Karsten Fennig ◽  
Stephan Bakan ◽  
Hartmut Grassl ◽  
...  

Abstract Today, latent heat flux and precipitation over the global ocean surface can be determined from microwave satellite data as a basis for estimating the related fields of the ocean surface freshwater flux. The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) is the only generally available satellite-based dataset with consistently derived global fields of both evaporation and precipitation and hence of freshwater flux for the period 1987–2005. This paper presents a comparison of the evaporation E, precipitation P, and the resulting freshwater flux E − P in HOAPS with recently available reference datasets from reanalysis and other satellite observation projects as well as in situ ship measurements. In addition, the humidity and wind speed input parameters for the evaporation are examined to identify sources for differences between the datasets. Results show that the general climatological patterns are reproduced by all datasets. Global mean time series often agree within about 10% of the individual products, while locally larger deviations may be found for all parameters. HOAPS often agrees better with the other satellite-derived datasets than with the in situ or the reanalysis data. The agreement usually improves in regions of good in situ sampling statistics. The biggest deviations of the evaporation parameter result from differences in the near-surface humidity estimates. The precipitation datasets exhibit large differences in highly variable regimes with the largest absolute differences in the ITCZ and the largest relative biases in the extratropical storm-track regions. The resulting freshwater flux estimates exhibit distinct differences in terms of global averages as well as regional biases. In comparison with long-term mean global river runoff data, the ocean surface freshwater balance is not closed by any of the compared fields. The datasets exhibit a positive bias in E − P of 0.2–0.5 mm day−1, which is on the order of 10% of the evaporation and precipitation estimates.


2019 ◽  
Vol 11 (1) ◽  
pp. 227-248 ◽  
Author(s):  
Lisan Yu

The ocean interacts with the atmosphere via interfacial exchanges of momentum, heat (via radiation and convection), and fresh water (via evaporation and precipitation). These fluxes, or exchanges, constitute the ocean-surface energy and water budgets and define the ocean's role in Earth's climate and its variability on both short and long timescales. However, direct flux measurements are available only at limited locations. Air–sea fluxes are commonly estimated from bulk flux parameterization using flux-related near-surface meteorological variables (winds, sea and air temperatures, and humidity) that are available from buoys, ships, satellite remote sensing, numerical weather prediction models, and/or a combination of any of these sources. Uncertainties in parameterization-based flux estimates are large, and when they are integrated over the ocean basins, they cause a large imbalance in the global-ocean budgets. Despite the significant progress that has been made in quantifying surface fluxes in the past 30 years, achieving a global closure of ocean-surface energy and water budgets remains a challenge for flux products constructed from all data sources. This review provides a personal perspective on three questions: First, to what extent can time-series measurements from air–sea buoys be used as benchmarks for accuracy and reliability in the context of the budget closures? Second, what is the dominant source of uncertainties for surface flux products, the flux-related variables or the bulk flux algorithms? And third, given the coupling between the energy and water cycles, precipitation and surface radiation can act as twin budget constraints—are the community-standard precipitation and surface radiation products pairwise compatible?


2012 ◽  
Vol 2 (1) ◽  
pp. 8-14 ◽  
Author(s):  
R. Tenzer ◽  
R. Čunderlík ◽  
N. Dayoub ◽  
A. Abdalla

Application of the BEM approach for a determination of the regional marine geoid model and the mean dynamic topography in the Southwest Pacific Ocean and Tasman SeaWe apply a novel approach for the gravimetric marine geoid modelling which utilise the boundary element method (BEM). The direct BEM formulation for the Laplace equation is applied to obtain a numerical solution to the linearised fixed gravimetric boundary-value problem in points at the Earth's surface. The numerical scheme uses the collocation method with linear basis functions. It involves a discretisation of the Earth's surface which is considered as a fixed boundary. The surface gravity disturbances represent the oblique derivative boundary condition. The BEM approach is applied to determine the marine geoid model over the study area of the Southwest Pacific Ocean and Tasman Sea using DNSC08 marine gravity data. The comparison of the BEM-derived and EGM2008 geoid models reveals that the geoid height differences vary within -25 and 18 cm with the standard deviation of 6 cm. The DNSC08 sea surface topography data and the new marine geoid are then used for modelling of the mean dynamic topography (MDT) over the study area. The local vertical datum (LVD) offsets estimated at 15 tide-gauge stations in New Zealand are finally used for testing the coastal MDT. The average value of differences between the MDT and LVD offsets is 1 cm.


2021 ◽  
Author(s):  
Clovis Thouvenin-Masson ◽  
Jacqueline Boutin ◽  
Jean-Luc Vergely ◽  
Dimitry Khvorostyanov ◽  
Xavier Perrot ◽  
...  

<p>Sea Surface Salinity (SSS) are retrieved from SMOS and SMAP L-band radiometers at a spatial resolution of about 50km.</p><p> </p><p>Traditionally, satellite SSS products validation is based on comparisons with in-situ near surface salinity measurements.</p><p> </p><p>In-situ measurements are performed on moorings, argo floats and along ship tracks[JB1] , which provide punctual or one-dimensional (along ship tracks) estimations of the SSS.</p><p> </p><p>The sampling difference between one-dimensional or punctual in-situ measurements and two-dimensional satellite products results in a sampling error that must be separated from measurement errors for the validation of satellite products.</p><p> </p><p>We use a small-scale resolution field (1/12° Mercator Global Ocean Physics Analysis and Forecast) to estimate the expected sampling error of each kind of in-situ measurements, by comparing punctual, [JB2] one-dimensional and two-dimensional SSS variability.</p><p> </p><p>The better understanding of sampling errors allows a more accurate validation of satellite SSS and of the errors estimated by satellite retrieval algorithms. The improvement is quantified by considering the standard deviation of satellite minus in-situ salinities differences normalized by the sampling and retrieval errors. This quantity should be equal to one if all the error contributions are correctly considered. This methodology will be applied to SMOS SSS and to merged SMOS and SMAP SSS products.</p>


2020 ◽  
Author(s):  
Eric P. Chassignet ◽  
Stephen G. Yeager ◽  
Baylor Fox-Kemper ◽  
Alexandra Bozec ◽  
Fred Castruccio ◽  
...  

Abstract. This paper presents global comparisons of fundamental global climate variables from a suite of four pairs of matched low- and high-resolution ocean and sea-ice simulations that are obtained following the OMIP-2 protocol (Griffies et al., 2016) and integrated for one cycle (1958–2018) of the JRA55-do atmospheric state and runoff dataset (Tsujino et al., 2018). Our goal is to assess the robustness of climate-relevant improvements in ocean simulations (mean and variability) associated with moving from coarse (~ 1º) to eddy-resolving (~ 0.1º) horizontal resolutions. The models are diverse in their numerics and parameterizations, but each low-resolution and high-resolution pair of models is matched so as to isolate, to the extent possible, the effects of horizontal resolution. A variety of observational datasets are used to assess the fidelity of simulated temperature and salinity, sea surface height, kinetic energy, heat and volume transports, and sea ice distribution. This paper provides a crucial benchmark for future studies comparing and improving different schemes in any of the models used in this study or similar ones. The biases in the low-resolution simulations are familiar and their gross features – position, strength, and variability of western boundary currents, equatorial currents, and Antarctic Circumpolar Current – are significantly improved in the high-resolution models. However, despite the fact that the high-resolution models "resolve" most of these features, the improvements in temperature or salinity are inconsistent among the different model families and some regions show increased bias over their low-resolution counterparts. Greatly enhanced horizontal resolution does not deliver unambiguous bias improvement in all regions for all models.


Sign in / Sign up

Export Citation Format

Share Document