scholarly journals Climate Variability and the Shape of Daily Precipitation: A Case Study of ENSO and the American West

2011 ◽  
Vol 24 (10) ◽  
pp. 2483-2499 ◽  
Author(s):  
Nicole Feldl ◽  
Gerard H. Roe

Abstract Characterizing the relationship between large-scale atmospheric circulation patterns and the shape of the daily precipitation distribution is fundamental to understanding how dynamical changes are manifest in the hydrological cycle, and it is also relevant to issues such as natural hazard mitigation and reservoir management. This relationship is pursued using ENSO variability and the American West as a case study. When considering the full range of wintertime precipitation and consistent with conventional wisdom, mean precipitation intensity is enhanced during El Niño relative to La Niña in the Southwest and vice versa in the Northwest. This change in mean is attributed to a shift in the distribution of daily precipitation toward more intense daily rainfall rates. In addition, fundamental changes in the shape of the precipitation distributions are observed, independent of shifts in the mean. Surprisingly, for intense precipitation, La Niña winters actually demonstrate a significant increase in intensity (but not frequency) across the Southwest. A main lesson from this analysis is that, in response to ENSO variability, changes in extreme events can be significantly different from changes in the mean. In some instances, even the sign of the change is reversed. This result suggests that patterns of large-scale variability have an effect on the precipitation distribution that is nuanced, and they cannot be regarded as simply causing a shift in climatic zones. It also raises interesting questions concerning how best to establish confidence in climate predictions.

2016 ◽  
Vol 29 (14) ◽  
pp. 5281-5297 ◽  
Author(s):  
Who M. Kim ◽  
Stephen Yeager ◽  
Ping Chang ◽  
Gokhan Danabasoglu

Abstract Deep convection in the Labrador Sea (LS) resumed in the winter of 2007/08 under a moderately positive North Atlantic Oscillation (NAO) state. This is in sharp contrast with the previous winter with weak convection, despite a similar positive NAO state. This disparity is explored here by analyzing reanalysis data and forced-ocean simulations. It is found that the difference in deep convection is primarily due to differences in large-scale atmospheric conditions that are not accounted for by the conventional NAO definition. Specifically, the 2007/08 winter was characterized by an atmospheric circulation anomaly centered in the western North Atlantic, rather than the eastern North Atlantic that the conventional NAO emphasizes. This anomalous circulation was also accompanied by anomalously cold conditions over northern North America. The controlling influence of these atmospheric conditions on LS deep convection in the 2008 winter is confirmed by sensitivity experiments where surface forcing and/or initial conditions are modified. An extended analysis for the 1949–2009 period shows that about half of the winters with strong heat losses in the LS are associated with such a west-centered circulation anomaly and cold conditions over northern North America. These are found to be accompanied by La Niña–like conditions in the tropical Pacific, suggesting that the atmospheric response to La Niña may have a strong influence on LS deep convection.


2017 ◽  
Vol 30 (11) ◽  
pp. 4207-4225 ◽  
Author(s):  
Tsubasa Kohyama ◽  
Dennis L. Hartmann ◽  
David S. Battisti

Abstract The majority of the models that participated in phase 5 of the Coupled Model Intercomparison Project global warming experiments warm faster in the eastern equatorial Pacific Ocean than in the west. GFDL-ESM2M is an exception among the state-of-the-art global climate models in that the equatorial Pacific sea surface temperature (SST) in the west warms faster than in the east, and the Walker circulation strengthens in response to warming. This study shows that this “La Niña–like” trend simulated by GFDL-ESM2M could be a physically consistent response to warming, and that the forced response could have been detectable since the late twentieth century. Two additional models are examined: GFDL-ESM2G, which differs from GFDL-ESM2M only in the oceanic components, warms without a clear zonal SST gradient; and HadGEM2-CC exhibits a warming pattern that resembles the multimodel mean. A fundamental observed constraint between the amplitude of El Niño–Southern Oscillation (ENSO) and the mean-state zonal SST gradient is reproduced well by GFDL-ESM2M but not by the other two models, which display substantially weaker ENSO nonlinearity than is observed. Under this constraint, the weakening nonlinear ENSO amplitude in GFDL-ESM2M rectifies the mean state to be La Niña–like. GFDL-ESM2M exhibits more realistic equatorial thermal stratification than GFDL-ESM2G, which appears to be the most important difference for the ENSO nonlinearity. On longer time scales, the weaker polar amplification in GFDL-ESM2M may also explain the origin of the colder equatorial upwelling water, which could in turn weaken the ENSO amplitude.


2020 ◽  
Vol 38 (1 Marzo-Ju) ◽  
pp. 79-98
Author(s):  
M.ª Isabel Vidal Esteve ◽  
José Peirats Chacón

En este estudio de caso se aborda la intervención realizada en un centro de diagnóstico y atención temprana, a una alumna de dos años con hemiparesia lateral izquierda y dificultades en la manipulación y comunicación. Aplicando a lo largo de cuatro meses el sistema de Comunicación Total de Benson Schaeffer con el apoyo del método TEACCH, se pretende superar las graves limitaciones comunicativas de la alumna. El procedimiento metodológico utilizado es mixto y las técnicas de investigación empleadas son la aplicación de un test estandarizado, la entrevista, los registros de observación y el análisis documental. A partir del test cumplimentado por la madre que establece la evaluación inicial del caso, se diseña y aplica el programa realizando registros sistemáticos, al final de la intervención se vuelve a cumplimentar y se comparan los datos conseguidos. Además, se entrevista a la cuidadora de la niña y se analiza la documentación aportada por la familia y el centro donde es atendida. Los resultados obtenidos muestran que se han logrado grandes beneficios en cuanto a aprendizaje de los signos, comunicación de necesidades, emisión de verbalizaciones y generalización en los distintos contextos, fomentando en la niña una mayor autonomía y estableciendo unas bases sólidas sobre las que poder sustentar nuevos aprendizajes. This case study reports on an intervention undertaken at a diagnostic and early attention center with a two-year-old pupil with left lateral hemiparesis and difficulties in handling and communication. By applying for four months the Benson Schaeffer's system (Total Communication) with the support of the TEACCH method, we aimed to overcome this pupil’s serious communicative limitations. The methodological procedure used was mixed and the investigation techniques used were the application of a standardized test, interviews, records of observation and documentary analysis. From the test filled in by the mother, which established the initial evaluation of the case, the program was applied, and daily records were kept. At the end of the intervention, the test was completed again and the information was compared. In addition, we interviewed her nanny and we analyzed the documentation provided by the family and the center where she is tended. Results show clear progress on the part of the baby: learning of signs, communication of needs, emission of verbalizations and generalization in different contexts. This promoted in the baby more autonomy and established a solid base from which she will be able to sustain new learnings.


2009 ◽  
Vol 22 (14) ◽  
pp. 3877-3893 ◽  
Author(s):  
Savin S. Chand ◽  
Kevin J. E. Walsh

Abstract This study examines the variations in tropical cyclone (TC) genesis positions and their subsequent tracks for different phases of the El Niño–Southern Oscillation (ENSO) phenomenon in the Fiji, Samoa, and Tonga region (FST region) using Joint Typhoon Warning Center best-track data. Over the 36-yr period from 1970/71 to 2005/06, 122 cyclones are observed in the FST region. A large spread in the genesis positions is noted. During El Niño years, genesis is enhanced east of the date line, extending from north of Fiji to over Samoa, with the highest density centered around 10°S, 180°. During neutral years, maximum genesis occurs immediately north of Fiji with enhanced genesis south of Samoa. In La Niña years, there are fewer cyclones forming in the region than during El Niño and neutral years. During La Niña years, the genesis positions are displaced poleward of 12°S, with maximum density centered around 15°S, 170°E and south of Fiji. The cyclone tracks over the FST region are also investigated using cluster analysis. Tracks during the period 1970/71–2005/06 are conveniently described using three separate clusters, with distinct characteristics associated with different ENSO phases. Finally, the role of large-scale environmental factors affecting interannual variability of TC genesis positions and their subsequent tracks in the FST region are investigated. Favorable genesis positions are observed where large-scale environments have the following seasonal average thresholds: (i) 850-hPa cyclonic relative vorticity between −16 and −4 (×10−6 s−1), (ii) 200-hPa divergence between 2 and 8 (×10−6 s−1), and (iii) environmental vertical wind shear between 0 and 8 m s−1. The subsequent TC tracks are observed to be steered by mean 700–500-hPa winds.


2013 ◽  
Vol 26 (4) ◽  
pp. 1304-1321 ◽  
Author(s):  
Surendra P. Rauniyar ◽  
Kevin J. E. Walsh

Abstract This study examines the influence of ENSO on the diurnal cycle of rainfall during boreal winter for the period 1998–2010 over the Maritime Continent (MC) and Australia using Tropical Rainfall Measuring Mission (TRMM) and reanalysis data. The diurnal cycles are composited for the ENSO cold (La Niña) and warm (El Niño) phases. The k-means clustering technique is then applied to group the TRMM data into six clusters, each with a distinct diurnal cycle. Despite the alternating patterns of widespread large-scale subsidence and ascent associated with the Walker circulation, which dominates the climate over the MC during the opposing phases of ENSO, many of the islands of the MC show localized differences in rainfall anomalies that depend on the local geography and orography. While ocean regions mostly experience positive rainfall anomalies during La Niña, some local regions over the islands have more rainfall during El Niño. These local features are also associated with anomalies in the amplitude and characteristics of the diurnal cycle in these regions. These differences are also well depicted in large-scale dynamical fields derived from the interim ECMWF Re-Analysis (ERA-Interim).


2010 ◽  
Vol 23 (13) ◽  
pp. 3425-3445 ◽  
Author(s):  
Savin S. Chand ◽  
Kevin J. E. Walsh ◽  
Johnny C. L. Chan

Abstract This study presents seasonal prediction schemes for tropical cyclones (TCs) affecting the Fiji, Samoa, and Tonga (FST) region. Two separate Bayesian regression models are developed: (i) for cyclones forming within the FST region (FORM) and (ii) for cyclones entering the FST region (ENT). Predictors examined include various El Niño–Southern Oscillation (ENSO) indices and large-scale environmental parameters. Only those predictors that showed significant correlations with FORM and ENT are retained. Significant preseason correlations are found as early as May–July (approximately three months in advance). Therefore, May–July predictors are used to make initial predictions, and updated predictions are issued later using October–December early-cyclone-season predictors. A number of predictor combinations are evaluated through a cross-validation technique. Results suggest that a model based on relative vorticity and the Niño-4 index is optimal to predict the annual number of TCs associated with FORM, as it has the smallest RMSE associated with its hindcasts (RMSE = 1.63). Similarly, the all-parameter-combined model, which includes the Niño-4 index and some large-scale environmental fields over the East China Sea, appears appropriate to predict the annual number of TCs associated with ENT (RMSE = 0.98). While the all-parameter-combined ENT model appears to have good skill over all years, the May–July prediction of the annual number of TCs associated with FORM has two limitations. First, it underestimates (overestimates) the formation for years where the onset of El Niño (La Niña) events is after the May–July preseason or where a previous La Niña (El Niño) event continued through May–July during its decay phase. Second, its performance in neutral conditions is quite variable. Overall, no significant skill can be achieved for neutral conditions even after an October–December update. This is contrary to the performance during El Niño or La Niña events, where model performance is improved substantially after an October–December early-cyclone-season update.


2016 ◽  
Vol 29 (23) ◽  
pp. 8575-8588 ◽  
Author(s):  
Yang Yang ◽  
Lynn M. Russell ◽  
Sijia Lou ◽  
Maryam A. Lamjiri ◽  
Ying Liu ◽  
...  

Abstract Two 150-yr preindustrial simulations with and without interactive sea salt emissions from the Community Earth System Model (CESM) are performed to quantify the interactions between sea salt emissions and El Niño–Southern Oscillation (ENSO). Variations in sea salt emissions over the tropical Pacific Ocean are affected by changing wind speed associated with ENSO variability. ENSO-induced interannual variations in sea salt emissions result in decreasing (increasing) aerosol optical depth (AOD) by 0.03 over the equatorial central-eastern (western) Pacific Ocean during El Niño events compared to those during La Niña events. These changes in AOD further increase (decrease) radiative fluxes into the atmosphere by +0.2 (−0.4) W m−2 over the tropical eastern (western) Pacific. Thereby, sea surface temperature increases (decreases) by 0.2–0.4 K over the tropical eastern (western) Pacific Ocean during El Niño compared to La Niña events and enhances ENSO variability by 10%. The increase in ENSO amplitude is a result of systematic heating (cooling) during the warm (cold) phase of ENSO in the eastern Pacific. Interannual variations in sea salt emissions then produce the anomalous ascent (subsidence) over the equatorial eastern (western) Pacific between El Niño and La Niña events, which is a result of heating anomalies. Owing to variations in sea salt emissions, the convective precipitation is enhanced by 0.6–1.2 mm day−1 over the tropical central-eastern Pacific Ocean and weakened by 0.9–1.5 mm day−1 over the Maritime Continent during El Niño compared to La Niña events, enhancing the precipitation variability over the tropical Pacific.


2019 ◽  
Vol 627 ◽  
pp. A27 ◽  
Author(s):  
Jin-Long Xu ◽  
Annie Zavagno ◽  
Naiping Yu ◽  
Xiao-Lan Liu ◽  
Ye Xu ◽  
...  

Aims. We aim to investigate the impact of the ionized radiation from the M 16 H II region on the surrounding molecular cloud and on its hosted star formation. Methods. To present comprehensive multi-wavelength observations towards the M 16 H II region, we used new CO data and existing infrared, optical, and submillimeter data. The 12CO J = 1−0, 13CO J = 1−0, and C18O J = 1−0 data were obtained with the Purple Mountain Observatory (PMO) 13.7 m radio telescope. To trace massive clumps and extract young stellar objects (YSOs) associated with the M 16 H II region, we used the ATLASGAL and GLIMPSE I catalogs, respectively. Results. From CO data, we discern a large-scale filament with three velocity components. Because these three components overlap with each other in both velocity and space, the filament may be made of three layers. The M 16 ionized gas interacts with the large-scale filament and has reshaped its structure. In the large-scale filament, we find 51 compact cores from the ATLASGAL catalog, 20 of them being quiescent. The mean excitation temperature of these cores is 22.5 K, while this is 22.2 K for the quiescent cores. This high temperature observed for the quiescent cores suggests that the cores may be heated by M 16 and do not experience internal heating from sources in the cores. Through the relationship between the mass and radius of these cores, we obtain that 45% of all the cores are massive enough to potentially form massive stars. Compared with the thermal motion, the turbulence created by the nonthermal motion is responsible for the core formation. For the pillars observed towards M 16, the H II region may give rise to the strong turbulence.


2009 ◽  
Vol 22 (8) ◽  
pp. 2240-2247 ◽  
Author(s):  
Yun Qiu ◽  
Wenju Cai ◽  
Xiaogang Guo ◽  
Aijun Pan

Abstract Since 1951, late spring (May) rainfall over southeastern China (SEC) has decreased by more than 30% from its long-term average, in contrast to a rainfall increase in boreal summer. The dynamics have yet to be fully determined. This paper shows that as the Indo-Pacific enters into a La Niña phase, significant negative mean sea level pressure (MSLP) anomalies grow over the Indian Ocean and the western Pacific sector. The associated large-scale southwesterly anomalies transport moisture to the nearby South China Sea and the SEC region, contributing to a higher rainfall. A presence of a Philippine Sea anticyclonic (PSAC) pattern, arising from a decaying El Niño, strengthens the rain-conducive flow to SEC, but it is not a necessary condition. During the past decades, an increase in protracted El Niño events accompanied by a reduction in La Niña episodes has contributed to the May rainfall decline. The extent to which climate change is contributing is discussed.


Author(s):  
Eder Alexandre Schatz Sá ◽  
Carolina Natel de Moura ◽  
Victor Luís Padilha ◽  
Claudia Guimarães Camargo Campos

This study evaluates the occurrence of trends in time series of precipitation in the highlands region of Santa Catarina, Southern Brazil. Daily precipitation data of three weather stations at Lages, São Joaquim and Campos Novos were used to evaluate rainfall trends. The trends were analyzed through the Seasonal Mann Kendall test, to include occurrence of maximum annual 1-day precipitation (RX1), maximum annual consecutive 2-day precipitation (RX2) and maximum annual consecutive 3-day precipitation (RX3) and evaluation of Rainfall Anomaly Index (RAI). Trends were identified in two of three weather stations investigated. Positive precipitation trends were found in the spring and winter for Lages, and in the spring and summer for São Joaquim. Also, there is a trend of increase in the RX1, RX2 and RX3 frequencies and an increase in positive anomalies in the last decade for these stations. There are no statistically significant trends in the precipitation of Campos Novos, which may be associated with the short series of available data for the analysis. The occurrence of El Niño phenomenon with moderate to strong intensity was usually associated with the occurrence of positive precipitation anomalies and the La Niña phenomenon was related to the occurrence of negative anomalies. However, the influence of La Niña in the periods of negative anomaly has been reduced since the beginning of the 21st century.


Sign in / Sign up

Export Citation Format

Share Document