scholarly journals Synoptically Driven Arctic Winter States

2011 ◽  
Vol 24 (6) ◽  
pp. 1747-1762 ◽  
Author(s):  
Kirstie Stramler ◽  
Anthony D. Del Genio ◽  
William B. Rossow

Abstract The dense network of the Surface Heat Budget of the Arctic (SHEBA) observations is used to assess relationships between winter surface and atmospheric variables as the SHEBA site came under the influence of cyclonic and anticyclonic atmospheric circulation systems. Two distinct and preferred states of subsurface, surface, atmosphere, and clouds occur during the SHEBA winter, extending from the oceanic mixed layer through the troposphere and preceded by same-sign variations in the stratosphere. These states are apparent in distributions of surface temperature, sensible heat and longwave radiation fluxes, ocean heat conduction, cloud-base height and temperature, and in the atmospheric humidity and temperature structure. Surface and atmosphere are in radiative–turbulent–conductive near-equilibrium during a warm opaquely cloudy-sky state, which persists up to 10 days and usually occurs during the low surface pressure phase of a baroclinic wave, although occasionally occurs during the high surface pressure phase because of low, scattered clouds. Clouds occurring in this state have near-unity emissivity and the lowest bases in the vicinity of, or below, the temperature inversion peak. A cold radiatively clear-sky state persists up to two weeks, and occurs only in the high surface pressure phase of a baroclinic wave. The radiatively clear state has clouds that are too tenuous when surface based or, irrespective of opacity, located too far aloft to contribute significantly to the surface energy budget. There is a 13-K surface temperature difference between the two states, and atmospheric inversion peak temperatures are linearly related to the surface temperature in both states. The snow–sea ice interface temperature oscillates over the course of the winter season, as it cools during the radiatively clear state and is warmed from atmospheric emission above and ocean heat conduction from below during the opaquely cloudy state. Analysis of satellite data over the Arctic from 70°–90°N indicates that the radiatively clear and opaquely cloudy states observed at SHEBA may be representative of the entire Arctic basin. The results suggest that model formulation inadequacies should be easier to diagnose if modeled energy transfers are compared with observations using process-based metrics that acknowledge the bimodal nature of the Arctic ocean–ice–snow–atmosphere column, rather than monthly and regionally averaged quantities. Climate change projections of thinner Arctic sea ice and larger advective water vapor influxes into the Arctic could yield different frequencies of occupation of the radiatively clear and opaquely cloudy states and higher wintertime temperatures of SHEBA ocean, ice, snow, atmosphere, and clouds—in particular, a wintertime warming of the snow–sea ice interface temperature.

2002 ◽  
Vol 34 ◽  
pp. 420-428 ◽  
Author(s):  
Josefino C. Comiso

AbstractCo-registered and continuous satellite data of sea-ice concentrations and surface ice temperatures from 1981 to 2000 are analyzed to evaluate relationships between these two critical climate parameters and what they reveal in tandem about the changing Arctic environment. During the 19 year period, the Arctic ice extent and actual ice area are shown to be declining at a rate of –2.0±0.3% dec –1 and 3.1 ±0.4% dec–1, respectively, while the surface ice temperature has been increasing at 0.4 ±0.2 K dec–1, where dec is decade. The extent and area of the perennial ice cover, estimated from summer minimum values, have been declining at a much faster rate of –6.7±2.4% dec–1 and –8.3±2.4% dec–1, respectively, while the surface ice temperature has been increasing at 0.9 ±0.6K dec–1. This unusual rate of decline is accompanied by a very variable summer ice cover in the 1990s compared to the 1980s, suggesting increases in the fraction of the relatively thin second-year, and hence a thinning in the perennial, ice cover during the last two decades. Yearly anomaly maps show that the ice-concentration anomalies are predominantly positive in the 1980s and negative in the 1990s, while surface temperature anomalies were mainly negative in the 1980s and positive in the 1990s. The yearly ice-concentration and surface temperature anomalies are highly correlated, indicating a strong link especially in the seasonal region and around the periphery of the perennial ice cover. The surface temperature anomalies also reveal the spatial scope of each warming (or cooling) phenomenon that usually extends beyond the boundaries of the sea-ice cover.


2018 ◽  
Vol 31 (11) ◽  
pp. 4225-4240 ◽  
Author(s):  
Joseph Sedlar

Abstract Springtime atmospheric preconditioning of Arctic sea ice for enhanced or buffered sea ice melt during the subsequent melt year has received considerable research focus. Studies have identified enhanced poleward atmospheric transport of moisture and heat during spring, leading to increased emission of longwave radiation to the surface. Simultaneously, these studies ruled out the role of shortwave radiation as an effective preconditioning mechanism because of relatively weak incident solar radiation, high surface albedo from sea ice and snow, and increased clouds during spring. These conclusions are derived primarily from atmospheric reanalysis, which may not always accurately represent the Arctic climate system. Here, top-of-atmosphere shortwave radiation observations from a state-of-the-art satellite sensor are compared with ERA-Interim reanalysis to examine similarities and differences in the springtime absorbed shortwave radiation (ASR) over the Arctic Ocean. Distinct biases in regional location and absolute magnitude of ASR anomalies are found between satellite-based measurements and reanalysis. Observations indicate separability between ASR anomalies in spring corresponding to anomalously low and high ice extents in September; the reanalysis fails to capture the full extent of this separability. The causes for the difference in ASR anomalies between observations and reanalysis are considered in terms of the variability in surface albedo and cloud presence. Additionally, biases in reanalysis cloud water during spring are presented and are considered for their impact on overestimating spring downwelling longwave anomalies. Taken together, shortwave radiation should not be overlooked as a contributing mechanism to springtime Arctic atmospheric preconditioning.


2011 ◽  
Vol 24 (19) ◽  
pp. 4973-4991 ◽  
Author(s):  
Peter R. Gent ◽  
Gokhan Danabasoglu ◽  
Leo J. Donner ◽  
Marika M. Holland ◽  
Elizabeth C. Hunke ◽  
...  

The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community. This paper describes developments to all CCSM components, and documents fully coupled preindustrial control runs compared to the previous version, CCSM3. Using the standard atmosphere and land resolution of 1° results in the sea surface temperature biases in the major upwelling regions being comparable to the 1.4°-resolution CCSM3. Two changes to the deep convection scheme in the atmosphere component result in CCSM4 producing El Niño–Southern Oscillation variability with a much more realistic frequency distribution than in CCSM3, although the amplitude is too large compared to observations. These changes also improve the Madden–Julian oscillation and the frequency distribution of tropical precipitation. A new overflow parameterization in the ocean component leads to an improved simulation of the Gulf Stream path and the North Atlantic Ocean meridional overturning circulation. Changes to the CCSM4 land component lead to a much improved annual cycle of water storage, especially in the tropics. The CCSM4 sea ice component uses much more realistic albedos than CCSM3, and for several reasons the Arctic sea ice concentration is improved in CCSM4. An ensemble of twentieth-century simulations produces a good match to the observed September Arctic sea ice extent from 1979 to 2005. The CCSM4 ensemble mean increase in globally averaged surface temperature between 1850 and 2005 is larger than the observed increase by about 0.4°C. This is consistent with the fact that CCSM4 does not include a representation of the indirect effects of aerosols, although other factors may come into play. The CCSM4 still has significant biases, such as the mean precipitation distribution in the tropical Pacific Ocean, too much low cloud in the Arctic, and the latitudinal distributions of shortwave and longwave cloud forcings.


2006 ◽  
Vol 52 (178) ◽  
pp. 433-439 ◽  
Author(s):  
Larissa Nazarenko ◽  
Nickolai Tausnev ◽  
James Hansen

AbstractUsing a global climate model coupled with an ocean and a sea-ice model, we compare the effects of doubling CO2 and halving CO2 on sea-ice cover and connections with the atmosphere and ocean. An overall warming in the 2 × CO2 experiment causes reduction of sea-ice extent by 15%, with maximum decrease in summer and autumn, consistent with observed seasonal sea-ice changes. The intensification of the Northern Hemisphere circulation is reflected in the positive phase of the Arctic Oscillation (AO), associated with higher-than-normal surface pressure south of about 50° N and lower-than-normal surface pressure over the high northern latitudes. Strengthening the polar cell causes enhancement of westerlies around the Arctic perimeter during winter. Cooling, in the 0.5 × CO2 experiment, leads to thicker and more extensive sea ice. In the Southern Hemisphere, the increase in ice-covered area (28%) dominates the ice-thickness increase (5%) due to open ocean to the north. In the Northern Hemisphere, sea-ice cover increases by only 8% due to the enclosed land/sea configuration, but sea ice becomes much thicker (108%). Substantial weakening of the polar cell due to increase in sea-level pressure over polar latitudes leads to a negative trend of the winter AO index. The model reproduces large year-to-year variability under both cooling and warming conditions.


2001 ◽  
Vol 33 ◽  
pp. 457-473 ◽  
Author(s):  
Josefino C. Comiso

AbstractRecent observations of a decreasing ice extent and a possible thinning of the ice cover in the Arctic make it imperative that detailed studies of the current Arctic environment are made, especially since the region is known to be highly sensitive to a potential change in climate. A continuous dataset of microwave, thermal infrared and visible satellite data has been analyzed for the first time to concurrently study in spatial detail the variability of the sea-ice cover, surface temperature, albedo and cloud statistics in the region from 1987 to 1998. Large warming anomalies during the last four years (i.e. 1995−98) are indeed apparent and spatially more extensive than previous years. The largest surface temperature anomaly occurred in 1998, but this was confined mainly to the western Arctic and the North American continent, while cooling occurred in other areas. The albedo anomalies show good coherence with the sea-ice concentration anomalies except in the central region, where periodic changes in albedo are observed, indicative of interannual changes in duration and areal extent of melt ponding and snow-free ice cover. The cloud-cover anomalies are more difficult to interpret, but are shown to be well correlated with the expected warming effects of clouds on the sea-ice surface. The results from trend analyses of the data are consistent with a general warming trend and an ice-cover retreat that appear to be even larger during the last dozen years than those previously reported.


2012 ◽  
Vol 9 (2) ◽  
pp. 1009-1043 ◽  
Author(s):  
G. Dybkjær ◽  
R. Tonboe ◽  
J. Høyer

Abstract. The ice surface temperature (IST) is an important boundary condition for both atmospheric and ocean and sea ice models and for coupled systems. An operational ice surface temperature product using satellite Metop AVHRR infra-red data was developed for MyOcean. The IST can be mapped in clear sky regions using a split window algorithm specially tuned for sea ice. Clear sky conditions are prevailing during spring in the Arctic while persistent cloud cover limits data coverage during summer. The cloud covered regions are detected using the EUMETSAT cloud mask. The Metop IST compares to 2 m temperature at the Greenland ice cap Summit within STD error of 3.14 °C and to Arctic drifting buoy temperature data within STD error of 3.69 °C. A case study reveal that the in situ radiometer data versus satellite IST STD error can be much lower (0.73 °C) and that the different in situ measures complicates the validation. Differences and variability between Metop IST and in situ data are analysed and discussed. An inter-comparison of Metop IST, numerical weather prediction temperatures and in situ observation indicates large biases between the different quantities. Because of the scarcity of conventional surface temperature or surface air temperature data in the Arctic the satellite IST data with its relatively good coverage can potentially add valuable information to model analysis for the Arctic atmosphere.


Author(s):  
Josefino C. Comiso

The trends in the sea ice cover in the two hemispheres have been observed to be asymmetric with the rate of change in the Arctic being negative at −3.8 % per decade while that of the Antarctic is positive at 1.7 % per decade. These observations are confirmed in this study through analyses of a more robust data set that has been enhanced for better consistency and updated for improved statistics. With reports of anthropogenic global warming such phenomenon appears physically counter intuitive but trend studies of surface temperature over the same time period show the occurrence of a similar asymmetry. Satellite surface temperature data show that while global warming is strong and dominant in the Arctic, it is relatively minor in the Antarctic with the trends in sea ice covered areas and surrounding ice free regions observed to be even negative. A strong correlation of ice extent with surface temperature is observed, especially during the growth season, and the observed trends in the sea ice cover are coherent with the trends in surface temperature. The trend of global averages of the ice cover is negative but modest and is consistent and compatible with the positive but modest trend in global surface temperature. A continuation of the trend would mean the disappearance of summer ice by the end of the century but modelling projections indicate that the summer ice could be salvaged if anthropogenic greenhouse gases in the atmosphere are kept constant at the current level.


2020 ◽  
Vol 66 (3) ◽  
pp. 364-380
Author(s):  
B. V. Ivanov ◽  
A. V. Urazgildeeva ◽  
A. N. Paramzin ◽  
S. S. Sirovetkin ◽  
D. V. Drabenko

The studies of the features of turbulent heat exchange were carried out for the first time in domestic practice near ice ridge areas of sea ice using an unmanned aerial vehicle (UAV) as part of the expedition "Transarktika-2019" onboard the R/V “Akademik Tryoshnikov”. An original measuring complex designed in AARI, was used to assess the characteristics of the ice surface (ice ridges, flat areas of ice). This made it possible to obtain comparative estimates of the albedo and surface temperature of different morphometric structures of the sections of the ice field, where the expedition's ice camp was organized. Measurements of air temperature and wind velocity were carried in the atmospheric surface layer on flat snow-covered areas of sea ice out from the windward and leeward sides of the ridge in parallel with the UAV flights. As a result of the experiments, it was found that the ice ridges areas have a lower albedo and surface temperature compared to neighboring areas of flat sea ice on average. Turbulent heat fluxes from the windward side of the hummock ridge exceed similar values recorded from the leeward side under conditions of unstable stratification in the atmospheric surface layer and exceed the fluxes calculated for conditions of flat ice on the sections with absence of hummocks, on average. In total, the nature and intensity of turbulent heat conduction in the ice ridges area differs from the analogous values observed on the flat sea ice cover. It is possible that the assessment of heat conduction with the atmosphere requires a certain revision, against the background (within the conditions) of thin first-year ice increasing which is more prone to hummocking than multi-year ice.


2020 ◽  
Vol 20 (20) ◽  
pp. 12285-12312
Author(s):  
Sora Seo ◽  
Andreas Richter ◽  
Anne-Marlene Blechschmidt ◽  
Ilias Bougoudis ◽  
John Philip Burrows

Abstract. Satellite observations have shown large areas of elevated bromine monoxide (BrO) covering several thousand square kilometres over the Arctic and Antarctic sea ice regions in polar spring. These enhancements of total BrO columns result from increases in stratospheric or tropospheric bromine amounts or both, and their occurrence may be related to local meteorological conditions. In this study, the spatial distribution of the occurrence of total BrO column enhancements and the associated changes in meteorological parameters are investigated in both the Arctic and Antarctic regions using 10 years of Global Ozone Monitoring Experiment-2 (GOME-2) measurements and meteorological model data. Statistical analysis of the data presents clear differences in the meteorological conditions between the 10-year mean and episodes of enhanced total BrO columns in both polar sea ice regions. These differences show pronounced spatial patterns. In general, atmospheric low pressure, cold surface air temperature, high surface-level wind speed, and low tropopause heights were found during periods of enhanced total BrO columns. In addition, spatial patterns of prevailing wind directions related to the BrO enhancements are identified in both the Arctic and Antarctic sea ice regions. The relevance of the different meteorological parameters on the total BrO column is evaluated based on a Spearman rank correlation analysis, finding that tropopause height and surface air temperature have the largest correlations with the total BrO vertical column density. Our results demonstrate that specific meteorological parameters can have a major impact on the BrO enhancement in some areas, but in general, multiple meteorological parameters interact with each other in their influence on BrO columns.


Sign in / Sign up

Export Citation Format

Share Document