A New Dual-Polarization Radar Rainfall Algorithm: Application in Colorado Precipitation Events

2011 ◽  
Vol 28 (3) ◽  
pp. 352-364 ◽  
Author(s):  
R. Cifelli ◽  
V. Chandrasekar ◽  
S. Lim ◽  
P. C. Kennedy ◽  
Y. Wang ◽  
...  

Abstract The efficacy of dual-polarization radar for quantitative precipitation estimation (QPE) has been demonstrated in a number of previous studies. Specifically, rainfall retrievals using combinations of reflectivity (Zh), differential reflectivity (Zdr), and specific differential phase (Kdp) have advantages over traditional Z–R methods because more information about the drop size distribution (DSD) and hydrometeor type are available. In addition, dual-polarization-based rain-rate estimators can better account for the presence of ice in the sampling volume. An important issue in dual-polarization rainfall estimation is determining which method to employ for a given set of polarimetric observables. For example, under what circumstances does differential phase information provide superior rain estimates relative to methods using reflectivity and differential reflectivity? At Colorado State University (CSU), an optimization algorithm has been developed and used for a number of years to estimate rainfall based on thresholds of Zh, Zdr, and Kdp. Although the algorithm has demonstrated robust performance in both tropical and midlatitude environments, results have shown that the retrieval is sensitive to the selection of the fixed thresholds. In this study, a new rainfall algorithm is developed using hydrometeor identification (HID) to guide the choice of the particular rainfall estimation algorithm. A separate HID algorithm has been developed primarily to guide the rainfall application with the hydrometeor classes, namely, all rain, mixed precipitation, and all ice. Both the data collected from the S-band Colorado State University–University of Chicago–Illinois State Water Survey (CSU–CHILL) radar and a network of rain gauges are used to evaluate the performance of the new algorithm in mixed rain and hail in Colorado. The evaluation is also performed using an algorithm similar to the one developed for the Joint Polarization Experiment (JPOLE). Results show that the new CSU HID-based algorithm provides good performance for the Colorado case studies presented here.

2015 ◽  
Vol 16 (4) ◽  
pp. 1658-1675 ◽  
Author(s):  
Bong-Chul Seo ◽  
Brenda Dolan ◽  
Witold F. Krajewski ◽  
Steven A. Rutledge ◽  
Walter Petersen

Abstract This study compares and evaluates single-polarization (SP)- and dual-polarization (DP)-based radar-rainfall (RR) estimates using NEXRAD data acquired during Iowa Flood Studies (IFloodS), a NASA GPM ground validation field campaign carried out in May–June 2013. The objective of this study is to understand the potential benefit of the DP quantitative precipitation estimation, which selects different rain-rate estimators according to radar-identified precipitation types, and to evaluate RR estimates generated by the recent research SP and DP algorithms. The Iowa Flood Center SP (IFC-SP) and Colorado State University DP (CSU-DP) products are analyzed and assessed using two high-density, high-quality rain gauge networks as ground reference. The CSU-DP algorithm shows superior performance to the IFC-SP algorithm, especially for heavy convective rains. We verify that dynamic changes in the proportion of heavy rain during the convective period are associated with the improved performance of CSU-DP rainfall estimates. For a lighter rain case, the IFC-SP and CSU-DP products are not significantly different in statistical metrics and visual agreement with the rain gauge data. This is because both algorithms use the identical NEXRAD reflectivity–rain rate (Z–R) relation that might lead to substantial underestimation for the presented case.


2020 ◽  
Vol 21 (6) ◽  
pp. 1333-1347 ◽  
Author(s):  
Bong-Chul Seo ◽  
Witold F. Krajewski ◽  
Alexander Ryzhkov

AbstractThis study demonstrates an implementation of the prototype quantitative precipitation R estimation algorithm using specific attenuation A for S-band polarimetric radar. The performance of R(A) algorithm is assessed, compared to the conventional algorithm using radar reflectivity Z, at multiple temporal scales. Because the factor α, defined as the net ratio of A to specific differential phase, is a key parameter of the algorithm characterized by drop size distributions (e.g., differential reflectivity Zdr dependence on Z), the estimation equations of α and a proper number of Zdr–Z samples required for a reliable α estimation are examined. Based on the dynamic estimation of α, the event-based evaluation using hourly rain gauge observations reveals that the performance of R(A) is superior to that of R(Z), with better agreement and lower variability. Despite its superiority, the study finds that R(A) leads to quite consistent overestimations of about 10%–30%. It is demonstrated that the application of uniform α over the entire radar domain yields the observed uncertainty because of the heterogeneity of precipitation in the domain. A climatological range-dependent feature of R(A) and R(Z) is inspected in the multiyear evaluation at yearly scale using rain totals for April–October. While R(Z) exposes a systematic shift and overestimation, each of which arise from the radar miscalibration and bright band effects, R(A) combining with multiple R(Z) values for solid/mixed precipitation shows relatively robust performance without those effects. The immunity of R(A) to partial beam blockage (PBB) based on both qualitative and quantitative analyses is also verified. However, the capability of R(A) regarding PBB is limited by the presence of the melting layer and its application requirement for the total span of differential phase (e.g., 3°), which is another challenge for light rain.


2018 ◽  
Vol 57 (3) ◽  
pp. 755-775 ◽  
Author(s):  
Elizabeth J. Thompson ◽  
Steven A. Rutledge ◽  
Brenda Dolan ◽  
Merhala Thurai ◽  
V. Chandrasekar

AbstractDual-polarization radar rainfall estimation relationships have been extensively tested in continental and subtropical coastal rain regimes, with little testing over tropical oceans where the majority of rain on Earth occurs. A 1.5-yr Indo-Pacific warm pool disdrometer dataset was used to quantify the impacts of tropical oceanic drop-size distribution (DSD) variability on dual-polarization radar variables and their resulting utility for rainfall estimation. Variables that were analyzed include differential reflectivity Zdr; specific differential phase Kdp; reflectivity Zh; and specific attenuation Ah. When compared with continental or coastal convection, tropical oceanic Zdr and Kdp values were more often of low magnitude (<0.5 dB, <0.3° km−1) and Zdr was lower for a given Kdp or Zh, consistent with observations of tropical oceanic DSDs being dominated by numerous, small, less-oblate drops. New X-, C-, and S-band R estimators were derived: R(Kdp), R(Ah), R(Kdp, ζdr), R(z, ζdr), and R(Ah, ζdr), which use linear versions of Zdr and Zh, namely ζdr and z. Except for R(Kdp), convective/stratiform partitioning was unnecessary for these estimators. All dual-polarization estimators outperformed updated R(z) estimators derived from the same dataset. The best-performing estimator was R(Kdp, ζdr), followed by R(Ah, ζdr) and R(z, ζdr). The R error was further reduced in an updated blended algorithm choosing between R(z), R(z, ζdr), R(Kdp), and R(Kdp, ζdr) depending on Zdr > 0.25 dB and Kdp > 0.3° km−1 thresholds. Because of these thresholds and the lack of hail, R(Kdp) was never used. At all wavelengths, R(z) was still needed 43% of the time during light rain (R < 5 mm h−1, Zdr < 0.25 dB), composing 7% of the total rain volume. As wavelength decreased, R(Kdp, ζdr) was used more often, R(z, ζdr) was used less often, and the blended algorithm became increasingly more accurate than R(z).


2018 ◽  
Vol 35 (8) ◽  
pp. 1701-1721 ◽  
Author(s):  
Bin Pei ◽  
Firat Y. Testik

AbstractIn this study a new radar rainfall estimation algorithm—rainfall estimation using simulated raindrop size distributions (RESID)—was developed. This algorithm development was based upon the recent finding that measured and simulated raindrop size distributions (DSDs) with matching triplets of dual-polarization radar observables (i.e., horizontal reflectivity, differential reflectivity, and specific differential phase) produce similar rain rates. The RESID algorithm utilizes a large database of simulated gamma DSDs, theoretical rain rates calculated from the simulated DSDs, the corresponding dual-polarization radar observables, and a set of cost functions. The cost functions were developed using both the measured and simulated dual-polarization radar observables. For a given triplet of measured radar observables, RESID chooses a suitable cost function from the set and then identifies nine of the simulated DSDs from the database that minimize the value of the chosen cost function. The rain rate associated with the given radar observable triplet is estimated by averaging the calculated theoretical rain rates for the identified simulated DSDs. This algorithm is designed to reduce the effects of radar measurement noise on rain-rate retrievals and is not subject to the regression uncertainty introduced in the conventional development of the rain-rate estimators. The rainfall estimation capability of our new algorithm was demonstrated by comparing its performance with two benchmark algorithms through the use of rain gauge measurements from the Midlatitude Continental Convective Clouds Experiment (MC3E) and the Olympic Mountains Experiment (OLYMPEx). This comparison showed favorable performance of the new algorithm for the rainfall events observed during the field campaigns.


2016 ◽  
Author(s):  
H.-L. Kim ◽  
M.-K. Suk ◽  
H.-S. Park ◽  
G.-W. Lee ◽  
J.-S. Ko

Abstract. The shapes of raindrops play an important role in inducing polarimetric rainfall algorithms with differential reflectivity (ZDR) and specific differential phase (KDP). The shapes of raindrops have a direct impact on rainfall estimation. However, the characteristics of raindrop size distribution (DSD) are different depending on precipitation type, storm stage of development, and regional and climatological conditions. Therefore, it is necessary to provide assumptions based on raindrop shapes that reflect the rainfall characteristics of the Korean peninsula. In this study, we presented a method to find optimal polarimetric rainfall algorithms on the Korean peninsula using the 2-Dimensional Video Disdrometer (2DVD) and Bislsan S-Band dual-polarization radar. First, a new axis ratio of raindrop relations was developed for the improvement of rainfall estimation. Second, polarimetric rainfall algorithms were derived using different axis ratio relations, and estimated radar-point one-hour rain rate for the differences in polarimetric rainfall algorithms were compared with the hourly rain rate measured by gauge. In addition, radar rainfall estimation was investigated in relation to calibration bias of reflectivity and differential reflectivity. The derived raindrop axis ratio relation from the 2DVD was more oblate than existing relations in the D < 1.5 mm and D > 5.5 mm range. The R(KDP, ZDR) algorithm based on a new axis ratio relation showed the best result on DSD statistics; however, the R(Zh, ZDR) algorithm showed the best performance for radar rainfall estimation, because the rainfall events used in the analysis were mainly weak precipitation and KDP is noisy at lower rain rates ( ≤ 5 mm hr−1). Thus, the R(KDP, ZDR) algorithm is suitable for heavy rainfall and R(Zh, ZDR) algorithm is suited for light rainfall. The calibration bias of reflectivity (ZH) and differential reflectivity (ZDR) were calculated from the comparison of measured with simulated ZH and ZDR from the 2DVD. The calculated ZH and ZDR bias was used to reduce radar bias, and to produce more accurate rainfall estimation.


2015 ◽  
Vol 48 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Keon-Haeng Lee ◽  
◽  
Sanghun Lim ◽  
Bong-Joo Jang ◽  
Dong-Ryul Lee

2019 ◽  
Vol 20 (5) ◽  
pp. 999-1014 ◽  
Author(s):  
Stephen B. Cocks ◽  
Lin Tang ◽  
Pengfei Zhang ◽  
Alexander Ryzhkov ◽  
Brian Kaney ◽  
...  

Abstract The quantitative precipitation estimate (QPE) algorithm developed and described in Part I was validated using data collected from 33 Weather Surveillance Radar 1988-Doppler (WSR-88D) radars on 37 calendar days east of the Rocky Mountains. A key physical parameter to the algorithm is the parameter alpha α, defined as the ratio of specific attenuation A to specific differential phase KDP. Examination of a significant sample of tropical and continental precipitation events indicated that α was sensitive to changes in drop size distribution and exhibited lower (higher) values when there were lower (higher) concentrations of larger (smaller) rain drops. As part of the performance assessment, the prototype algorithm generated QPEs utilizing a real-time estimated and a fixed α were created and evaluated. The results clearly indicated ~26% lower errors and a 26% better bias ratio with the QPE utilizing a real-time estimated α as opposed to using a fixed value as was done in previous studies. Comparisons between the QPE utilizing a real-time estimated α and the operational dual-polarization (dual-pol) QPE used on the WSR-88D radar network showed the former exhibited ~22% lower errors, 7% less bias, and 5% higher correlation coefficient when compared to quality controlled gauge totals. The new QPE also provided much better estimates for moderate to heavy precipitation events and performed better in regions of partial beam blockage than the operational dual-pol QPE.


2013 ◽  
Vol 30 (9) ◽  
pp. 2108-2120 ◽  
Author(s):  
S. Lim ◽  
R. Cifelli ◽  
V. Chandrasekar ◽  
S. Y. Matrosov

Abstract This paper presents new methods for rainfall estimation from X-band dual-polarization radar observations along with advanced techniques for quality control, hydrometeor classification, and estimation of specific differential phase. Data collected from the Hydrometeorology Testbed (HMT) in orographic terrain of California are used to demonstrate the methodology. The quality control and hydrometeor classification are specifically developed for X-band applications, which use a “fuzzy logic” technique constructed from the magnitude of the copolar correlation coefficient and the texture of differential propagation phase. In addition, an improved specific differential phase retrieval and rainfall estimation method are also applied. The specific differential phase estimation is done for both the melting region and rain region, where it uses a conventional filtering method for the melting region and a self-consistency-based method that distributes the total differential phase consistent with the reflectivity factor for the rain region. Based on the specific differential phase, rainfall estimations were computed using data obtained from the NOAA polarimetric X-band radar for hydrometeorology (HYDROX) and evaluated using HMT rain gauge observations. The results show that the methodology works well at capturing the high-frequency rainfall variations for the events analyzed herein and can be useful for mountainous terrain applications.


2020 ◽  
Vol 21 (7) ◽  
pp. 1605-1620
Author(s):  
Hao Huang ◽  
Kun Zhao ◽  
Haonan Chen ◽  
Dongming Hu ◽  
Peiling Fu ◽  
...  

AbstractThe attenuation-based rainfall estimator is less sensitive to the variability of raindrop size distributions (DSDs) than conventional radar rainfall estimators. For the attenuation-based quantitative precipitation estimation (QPE), the key is to accurately estimate the horizontal specific attenuation AH, which requires a good estimate of the ray-averaged ratio between AH and specific differential phase KDP, also known as the coefficient α. In this study, a variational approach is proposed to optimize the coefficient α for better estimates of AH and rainfall. The performance of the variational approach is illustrated using observations from an S-band operational weather radar with rigorous quality control in south China, by comparing against the α optimization approach using a slope of differential reflectivity ZDR dependence on horizontal reflectivity factor ZH. Similar to the ZDR-slope approach, the variational approach can obtain the optimized α consistent with the DSD properties of precipitation on a sweep-to-sweep basis. The attenuation-based hourly rainfall estimates using the sweep-averaged α values from these two approaches show comparable accuracy when verified against the gauge measurements. One advantage of the variational approach is its feasibility to optimize α for each radar ray, which mitigates the impact of the azimuthal DSD variabilities on rainfall estimation. It is found that, based on the optimized α for radar rays, the hourly rainfall amounts derived from the variational approach are consistent with gauge measurements, showing lower bias (1.0%), higher correlation coefficient (0.92), and lower root-mean-square error (2.35 mm) than the results based on the sweep-averaged α.


Sign in / Sign up

Export Citation Format

Share Document