Coupling between Gravity Waves and Tropical Convection at Mesoscales

2011 ◽  
Vol 68 (11) ◽  
pp. 2582-2598 ◽  
Author(s):  
Todd P. Lane ◽  
Fuqing Zhang

Abstract An idealized cloud-system-resolving model simulation is used to examine the coupling between a tropical cloud population and the mesoscale gravity waves that it generates. Spectral analyses of the cloud and gravity wave fields identify a clear signal of coupling between the clouds and a deep tropospheric gravity wave mode with a vertical wavelength that matches the depth of the convection, which is about two-thirds of the tropospheric depth. This vertical wavelength and the period of the waves, defined by a characteristic convective time scale, means that the horizontal wavelength is constrained through the dispersion relation. Indeed, the wave–convection coupling manifests at the appropriate wavelength, with the emergence of quasi-regular cloud-system spacing of order 100 km. It is shown that cloud systems at this spacing achieve a quasi-resonant state, at least for a few convective life cycles. Such regular spacing is a key component of cloud organization and is likely a contributor to the processes controlling the upscale growth of convective systems. Other gravity wave processes are also elucidated, including their apparent role in the maintenance of convective systems by providing a mechanism for renewed convective activity and system longevity.

2014 ◽  
Vol 7 (10) ◽  
pp. 10771-10827
Author(s):  
Q. T. Trinh ◽  
S. Kalisch ◽  
P. Preusse ◽  
H.-Y. Chun ◽  
S. D. Eckermann ◽  
...  

Abstract. This paper describes a comprehensive observational filter for satellite infrared limb sounding of gravity waves. The filter considers instrument visibility and observation geometry with a high level of accuracy. It contains four main processes: visibility filter, projection of the wavelength on the tangent-point track, aliasing effect, and calculation of the observed vertical wavelength. The observation geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are mimicked. Gravity waves (GWs) simulated by coupling a convective GW source (CGWS) scheme and the gravity wave regional or global ray tracer (GROGRAT) are used as an example for applying the observational filter. Simulated spectra in terms of horizontal and vertical wave numbers (wavelengths) of gravity wave momentum flux (GWMF) are analyzed under the influence of the filter. We find that the most important processes, which have significant influence on the spectrum are: visibility filter (for both SABER and HIRDLS observation geometries), aliasing for SABER and projection on tangent-point track for HIRDLS. The vertical wavelength distribution is mainly affected by the retrieval as part of the "visibility filter" process. In addition, the short-horizontal-scale spectrum may be projected for some cases into a longer horizontal wavelength interval which originally was not populated. The filter largely reduces GWMF values of very short horizontal wavelength waves. The implications for interpreting observed data are discussed.


2015 ◽  
Vol 8 (3) ◽  
pp. 1491-1517 ◽  
Author(s):  
Q. T. Trinh ◽  
S. Kalisch ◽  
P. Preusse ◽  
H.-Y. Chun ◽  
S. D. Eckermann ◽  
...  

Abstract. This paper describes a comprehensive observational filter for satellite infrared limb sounding of gravity waves. The filter considers instrument visibility and observation geometry with a high level of accuracy. It contains four main processes: visibility filter, projection of the wavelength on the tangent-point track, aliasing effect, and calculation of the observed vertical wavelength. The observation geometries of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) and HIRDLS (High Resolution Dynamics Limb Sounder) are mimicked. Gravity waves (GWs) simulated by coupling a convective GW source (CGWS) scheme and the gravity wave regional or global ray tracer (GROGRAT) are used as an example for applying the observational filter. Simulated spectra in terms of horizontal and vertical wave numbers (wavelengths) of gravity wave momentum flux (GWMF) are analyzed under the influence of the filter. We find that the most important processes, which have significant influence on the spectrum are the visibility filter (for both SABER and HIRDLS observation geometries) and aliasing for SABER and projection on tangent-point track for HIRDLS. The vertical wavelength distribution is mainly affected by the retrieval as part of the "visibility filter" process. In addition, the short-horizontal-scale spectrum may be projected for some cases into a longer horizontal wavelength interval which originally was not populated. The filter largely reduces GWMF values of very short horizontal wavelength waves. The implications for interpreting observed data are discussed.


2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Takeru Yamada ◽  
Takeshi Imamura ◽  
Tetsuya Fukuhara ◽  
Makoto Taguchi

AbstractThe reason for stationary gravity waves at Venus’ cloud top to appear mostly at low latitudes in the afternoon is not understood. Since a neutral layer exists in the lower part of the cloud layer, the waves should be affected by the neutral layer before reaching the cloud top. To what extent gravity waves can propagate vertically through the neutral layer has been unclear. To examine the possibility that the variation of the neutral layer thickness is responsible for the dependence of the gravity wave activity on the latitude and the local time, we investigated the sensitivity of the vertical propagation of gravity waves on the neutral layer thickness using a numerical model. The results showed that stationary gravity waves with zonal wavelengths longer than 1000 km can propagate to the cloud-top level without notable attenuation in the neutral layer with realistic thicknesses of 5–15 km. This suggests that the observed latitudinal and local time variation of the gravity wave activity should be attributed to processes below the cloud. An analytical approach also showed that gravity waves with horizontal wavelengths shorter than tens of kilometers would be strongly attenuated in the neutral layer; such waves should originate in the altitude region above the neutral layer.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
R. N. Ghodpage ◽  
A. Taori ◽  
P. T. Patil ◽  
S. Gurubaran ◽  
A. K. Sharma ◽  
...  

Simultaneous mesospheric OH and O  (1S) night airglow intensity measurements from Kolhapur (16.8°N, 74.2°E) reveal unambiguous gravity wave signatures with periods varying from 01 hr to 9 hr with upward propagation. The amplitudes growth of these waves is found to vary from 0.4 to 2.2 while propagating from the OH layer (~87 km) to the O (1S) layer (~97 km). We find that vertical wavelength of the observed waves increases with the wave period. The damping factors calculated for the observed waves show large variations and that most of these waves were damped while traveling from the OH emission layer to the O (1S) emission layer. The damping factors for the waves show a positive correlation at vertical wavelengths shorter than 40 km, while a negative correlation at higher vertical wavelengths. We note that the damping factors have stronger positive correlation with meridional wind shears compared to the zonal wind shears.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 405
Author(s):  
Yuan Wang ◽  
Lifeng Zhang ◽  
Jun Peng ◽  
Yun Zhang ◽  
Tongfeng Wei

Spectral characteristics of lower-stratospheric gravity waves generated in idealized mei-yu front and tropical cyclone (TC) are compared by performing high-resolution simulations. The results suggest that the systems which organize convection in different forms can generate waves with distinctly different presentation. The mei-yu front appears as a linear zonal wave source and gravity waves are dominated by cross-frontal (meridional) propagating components. The northward (southward) components have dominant meridional wavelengths of 125–333 km (>250 km), periods of 100–200 min (83–143 min), and phase speeds of 0–15 m s−1 (15–20 m s−1). The TC appears as a point wave source and gravity waves propagate equally in various horizontal directions. The waves exhibit greater power and broader spectral distributions compared with those in the mei-yu front, with dominant horizontal wavelengths longer than 62.5 km, periods of 33–600 min, and phase speeds slower than ~40 m s−1.


2006 ◽  
Vol 24 (10) ◽  
pp. 2481-2491 ◽  
Author(s):  
V. Deepa ◽  
G. Ramkumar ◽  
B. V. Krishna Murthy

Abstract. The altitude profiles of temperature fluctuations in the stratosphere and mesosphere observed with the Rayleigh Lidar at Gadanki (13.5° N, 79.2° E) on 30 nights during January to March 1999 and 21 nights during February to April 2000 were analysed to bring out the temporal and vertical propagation characteristics of gravity wave perturbations. The gravity wave perturbations showed periodicities in the 0.5–3-h range and attained large amplitudes (4–5 K) in the mesosphere. The phase propagation characteristics of gravity waves with different periods showed upward wave propagation with a vertical wavelength of 5–7 km. The mean flow acceleration computed from the divergence of momentum flux of gravity waves is compared with that calculated from monthly values of zonal wind obtained from RH-200 rockets flights. Thus, the contribution of gravity waves towards the generation of Stratospheric Semi Annual Oscillation (SSAO) is estimated.


2010 ◽  
Vol 67 (10) ◽  
pp. 3208-3225 ◽  
Author(s):  
Todd P. Lane ◽  
Mitchell W. Moncrieff

Abstract Tropical convection is inherently multiscalar, involving complex fields of clouds and various regimes of convective organization ranging from small disorganized cumulus up to large organized convective clusters. In addition to being a crucial component of the atmospheric water cycle and the global heat budget, tropical convection induces vertical fluxes of horizontal momentum. There are two main contributions to the momentum transport. The first resides entirely in the troposphere and is due to ascent, descent, and organized circulations associated with precipitating convective systems. The second resides in the troposphere, stratosphere, and farther aloft and is caused by vertically propagating gravity waves. Both the convective momentum transport and the gravity wave momentum flux must be parameterized in general circulation models; yet in existing parameterizations, these two processes are treated independently. This paper examines the relationship between the convective momentum transport and convectively generated gravity wave momentum flux by utilizing idealized simulations of multiscale tropical convection in different wind shear conditions. The simulations produce convective systems with a variety of regimes of convective organization and therefore different convective momentum transport properties and gravity wave spectra. A number of important connections are identified, including a consistency in the sign of the momentum transports in the lower troposphere and stratosphere that is linked to the generation of gravity waves by tilted convective structures. These results elucidate important relationships between the convective momentum transport and the gravity wave momentum flux that will be useful for interlinking their parameterization in the future.


2006 ◽  
Vol 63 (12) ◽  
pp. 3253-3276 ◽  
Author(s):  
Christoph Zülicke ◽  
Dieter Peters

Poleward-breaking Rossby waves often induce an upper-level jet streak over northern Europe. Dominant inertia–gravity wave packets are observed downstream of this jet. The physical processes of their generation and propagation, in such a configuration, are investigated with a mesoscale model. The study is focused on an observational campaign from 17 to 19 December 1999 over northern Germany. Different simulations with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5) have been performed. For a high-resolution process study, three domains were set up that encompass the evolution of Rossby waves and that of inertia–gravity waves. To minimize the impact of model damping, the horizontal and vertical resolution has been adjusted appropriately. With a novel statistical approach, the properties of inertia–gravity wave packets have been estimated. This method uses the horizontal divergence field and takes into account the spatial extension of a wave packet. It avoids the explicit treatment of the background field and works for arbitrary wavelength. Two classes of inertia–gravity waves were found: subsynoptic waves with a horizontal wavelength of about 500 km and mesoscale waves with a horizontal wavelength of about 200 km. The subsynoptic structures were also detected in radiosonde observations during this campaign. The similarity between simulated and observed wavelengths and amplitudes suggests that the simulations can be considered as near realistic. Spontaneous radiation from unbalanced flow is an important process of inertia–gravity wave generation. Synoptic-scale imbalances in the exit region of the upper-tropospheric jet streak were identified with the smoothed cross-stream Lagrangian Rossby number. In a number of simulations with different physics, it was found that the inertia–gravity wave activity was related to the tropospheric jet, orography, and moist convection. The upward propagation of inertia–gravity waves was favored during this event of a poleward-breaking Rossby wave. The presence of the polar vortex induced background winds exceeding the critical line. Consequently, the activity of inertia–gravity waves in the lower stratosphere increased by an order of magnitude during the case study. The successful simulation of the complex processes of generation and propagation showed the important role of poleward Rossby wave breaking for the appearance of inertia–gravity waves in the midlatitudes.


2014 ◽  
Vol 71 (3) ◽  
pp. 929-952 ◽  
Author(s):  
Junhong Wei ◽  
Fuqing Zhang

Abstract A series of cloud-permitting simulations with the Weather Research and Forecast model (WRF) are performed to study the characteristics and source mechanisms of mesoscale gravity waves in moist baroclinic jet–front systems with varying degrees of convective instability. These idealized experiments are initialized with the same baroclinic jet but with different initial moisture content, which produce different life cycles of moist baroclinic waves, to investigate the relative roles of moist processes and baroclinicity in the generation and propagation of mesoscale gravity waves. The dry experiment with no moisture or convection simulates gravity waves that are consistent with past modeling studies. An experiment with a small amount of moisture produces similar baroclinic life cycles to the dry experiment but with the introduction of weak convective instability. Subsequent initiation of convection, although weak, may considerably amplify the gravity waves that are propagating away from the upper-level jet exit region crossing the ridge to the jet entrance region. The weak convection also generates a new wave mode of shorter-scale wave packets that are believed to interact with, strengthen, and modify the dry gravity wave modes. Further increase of the moisture content (up to 5 times) leads to strong convective instability and vigorous moist convection. Besides a faster-growing moist baroclinic wave, the convectively generated gravity waves emerge much earlier, are more prevalent, and are larger in amplitude; they are fully coupled with, and hardly separable from, the dry gravity wave modes under the complex background moist baroclinic waves.


2018 ◽  
Vol 11 (1) ◽  
pp. 215-232 ◽  
Author(s):  
Catrin I. Meyer ◽  
Manfred Ern ◽  
Lars Hoffmann ◽  
Quang Thai Trinh ◽  
M. Joan Alexander

Abstract. We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60∘ S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.


Sign in / Sign up

Export Citation Format

Share Document