scholarly journals Semiannual Cycle in Zonal Wind over the Equatorial Indian Ocean

2011 ◽  
Vol 24 (24) ◽  
pp. 6471-6485 ◽  
Author(s):  
Tomomichi Ogata ◽  
Shang-Ping Xie

Abstract The semiannual cycle in zonal wind over the equatorial Indian Ocean is investigated by use of ocean–atmospheric reanalyses, and linear ocean–atmospheric models. In observations, the semiannual cycle in zonal wind is dominant on the equator and confined in the planetary boundary layer (PBL). Results from a momentum budget analysis show that momentum advection generated by the cross-equatorial monsoon circulation is important for the semiannual zonal-wind cycle in the equatorial Indian Ocean. In experiments with a linearized primitive model of the atmosphere, semiannual momentum forcing due to the meridional advection over the central equatorial Indian Ocean is important to simulate the observed maxima of the semiannual cycle in equatorial zonal wind. Off Somalia, diabatic heating and surface friction over land weaken the semiannual response to large momentum forcing there. Results from a linear ocean model suggest that the semiannual zonal wind stress over the central equatorial Indian Ocean generates large semiannual variability in zonal current through a basin-mode resonance.

2018 ◽  
Vol 48 (6) ◽  
pp. 1333-1347 ◽  
Author(s):  
Ke Huang ◽  
Weiqing Han ◽  
Dongxiao Wang ◽  
Weiqiang Wang ◽  
Qiang Xie ◽  
...  

AbstractThis paper investigates the features of the Equatorial Intermediate Current (EIC) in the Indian Ocean and its relationship with basin resonance at the semiannual time scale by using in situ observations, reanalysis output, and a continuously stratified linear ocean model (LOM). The observational results show that the EIC is characterized by prominent semiannual variations with velocity reversals and westward phase propagation and that it is strongly influenced by the pronounced second baroclinic mode structure but with identifiable vertical phase propagation. Similar behavior is found in the reanalysis data and LOM results. The simulation of wind-driven equatorial wave dynamics in the LOM reveals that the observed variability of the EIC can be largely explained by the equatorial basin resonance at the semiannual period, when the second baroclinic Rossby wave reflected from the eastern boundary intensifies the directly forced equatorial Kelvin and Rossby waves in the basin interior. The sum of the first 10 modes can reproduce the main features of the EIC. Among these modes, the resonant second baroclinic mode makes the largest contribution, which dominates the vertical structure, semiannual cycle, and westward phase propagation of the EIC. The other 9 modes, however, are also important, and the superposition of the first 10 modes produces downward energy propagation in the equatorial Indian Ocean.


2007 ◽  
Vol 37 (2) ◽  
pp. 188-202 ◽  
Author(s):  
Lee-Lueng Fu

Abstract The forcing of the equatorial Indian Ocean by the highly periodic monsoon wind cycle creates many interesting intraseasonal variabilities. The frequency spectrum of the wind stress observations from the European Remote Sensing Satellite scatterometers reveals peaks at the seasonal cycle and its higher harmonics at 180, 120, 90, and 75 days. The observations of sea surface height (SSH) from the Jason and Ocean Topography Experiment (TOPEX)/Poseidon radar altimeters are analyzed to study the ocean’s response. The focus of the study is on the intraseasonal periods shorter than the annual period. The semiannual SSH variability is characterized by a basin mode involving Rossby waves and Kelvin waves traveling back and forth in the equatorial Indian Ocean between 10°S and 10°N. However, the interference of these waves with each other masks the appearance of individual Kelvin and Rossby waves, leading to a nodal point (amphidrome) of phase propagation on the equator at the center of the basin. The characteristics of the mode correspond to a resonance of the basin according to theoretical models. For the semiannual period and the size of the basin, the resonance involves the second baroclinic vertical mode of the ocean. The theory also calls for similar modes at 90 and 60 days. These modes are found only in the eastern part of the basin, where the wind forcing at these periods is primarily located. The western parts of the theoretical modal patterns are not observed, probably because of the lack of wind forcing. There is also similar SSH variability at 120 and 75 days. The 120-day variability, with spatial patterns resembling the semiannual mode, is close to a resonance involving the first baroclinic vertical mode. The 75-day variability, although not a resonant basin mode in theory, exhibits properties similar to the 60- and 90-day variabilities with energy confined to the eastern basin, where the SSH variability seems in resonance with the local wind forcing. The time it takes an oceanic signal to travel eastward as Kelvin waves from the forcing location along the equator and back as Rossby waves off the equator roughly corresponds to the period of the wind forcing. The SSH variability at 60–90 days is coherent with sea surface temperature (SST) with a near-zero phase difference, showing the effects of the time-varying thermocline depth on SST, which may affect the wind in an ocean–atmosphere coupled process governing the intraseasonal variability.


2009 ◽  
Vol 22 (10) ◽  
pp. 2678-2693 ◽  
Author(s):  
Chie Ihara ◽  
Yochanan Kushnir ◽  
Mark A. Cane ◽  
Victor H. de la Peña

Abstract The response of the equatorial Indian Ocean climate to global warming is investigated using model outputs submitted to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. In all of the analyzed climate models, the SSTs in the western equatorial Indian Ocean warm more than the SSTs in the eastern equatorial Indian Ocean under global warming; the mean SST gradient across the equatorial Indian Ocean is anomalously positive to the west in a warmer twenty-first-century climate compared to the twentieth-century climate, and it is dynamically consistent with the anomalous westward zonal wind stress and anomalous positive zonal sea level pressure (SLP) gradient to the east at the equator. This change in the zonal SST gradient in the equatorial Indian Ocean is detected even in the lowest-emission scenario, and the size of the change is not necessarily larger in the higher-emission scenario. With respect to the change over the equatorial Pacific in climate projections, the subsurface central Pacific displays the strongest cooling or weakest warming around the thermocline depth compared to that above and below in all of the climate models, whereas changes in the zonal SST gradient and zonal wind stress around the equator are model dependent and not straightforward.


2007 ◽  
Vol 20 (13) ◽  
pp. 3018-3035 ◽  
Author(s):  
Suryachandra A. Rao ◽  
Sebastien Masson ◽  
Jing-Jia Luo ◽  
Swadhin K. Behera ◽  
Toshio Yamagata

Abstract Using 200 yr of coupled general circulation model (CGCM) results, causes for the termination of Indian Ocean dipole (IOD) events are investigated. The CGCM used here is the Scale Interaction Experiment-Frontier Research Center for Global Change (SINTEX-F1) model, which consists of a version of the European Community–Hamburg (ECHAM4.6) atmospheric model and a version of the Ocean Parallelise (OPA8.2) ocean general circulation model. This model reproduces reasonably well the present-day climatology and interannual signals of the Indian and Pacific Oceans. The main characteristics of the intraseasonal disturbances (ISDs)/oscillations are also fairly well captured by this model. However, the eastward propagation of ISDs in the model is relatively fast in the Indian Ocean and stationary in the Pacific compared to observations. A sudden reversal of equatorial zonal winds is observed, as a result of significant intraseasonal disturbances in the equatorial Indian Ocean in November–December of IOD events, which evolve independently of ENSO. A majority of these IOD events (15 out of 18) are terminated mainly because of the 20–40-day ISD activity in the equatorial zonal winds. Ocean heat budget analysis in the upper 50 m clearly shows that the initial warming after the peak of the IOD phenomenon is triggered by increased solar radiation owing to clear-sky conditions in the eastern Indian Ocean. Subsequently, the equatorial jets excited by the ISD deepen the thermocline in the southeastern equatorial Indian Ocean. This deepening of the thermocline inhibits the vertical entrainment of cool waters and therefore the IOD is terminated. IOD events that co-occur with ENSO are terminated owing to anomalous incoming solar radiation as a result of prevailing cloud-free skies. Further warming occurs seasonally through the vertical convergence of heat due to a monsoonal wind reversal along Sumatra–Java. On occasion, strong ISD activities in July–August terminated short-lived IOD events by triggering downwelling intraseasonal equatorial Kelvin waves.


2006 ◽  
Vol 19 (10) ◽  
pp. 2036-2045 ◽  
Author(s):  
Chul Eddy Chung ◽  
V. Ramanathan

Abstract Sea surface temperatures (SSTs) in the equatorial Indian Ocean have warmed by about 0.6–0.8 K since the 1950s, accompanied by very little warming or even a slight cooling trend over the northern Indian Ocean (NIO). It is reported that this differential trend has resulted in a substantial weakening of the meridional SST gradient from the equatorial region to the South Asian coast during summer, to the extent that the gradient has nearly vanished recently. Based on simulations with the Community Climate Model Version 3 (CCM3), it is shown that the summertime weakening in the SST gradient weakens the monsoon circulation, resulting in less monsoon rainfall over India and excess rainfall in sub-Saharan Africa. The observed trend in SST is decomposed into a hypothetical uniform warming and a reduction in the meridional gradient. The uniform warming of the tropical Indian Ocean in the authors’ simulations increases the Indian summer monsoon rainfall by 1–2 mm day−1, which is opposed by a larger drying tendency due to the weakening of the SST gradient. The net effect is to decrease the Indian monsoon rainfall, while preventing the sub-Saharan region from becoming too dry. Published coupled ocean–atmosphere model simulations are used to describe the competing effects of the anthropogenic radiative forcing due to greenhouse gases and the anthropogenic South Asian aerosols on the observed SST gradient and the monsoon rainfall.


2005 ◽  
Vol 18 (17) ◽  
pp. 3450-3469 ◽  
Author(s):  
H. Annamalai ◽  
J. Potemra ◽  
R. Murtugudde ◽  
J. P. McCreary

Abstract Sea surface temperature observations in the eastern equatorial Indian Ocean (EEIO) during the period 1950–2003 indicate that Indian Ocean dipole/zonal mode (IODZM) events are strong in two decades, namely, the 1960s and 1990s. Atmospheric reanalysis products in conjunction with output from an ocean model are examined to investigate the possible reason for the occurrence of strong IODZM events in these two decades. Specifically, the hypothesis that the mean thermocline in the EEIO is raised or lowered depending on the phase of Pacific decadal variability (PDV), preconditioning the EEIO to favor stronger or weaker IODZM activity, is examined. Diagnostics reveal that the EEIO is preconditioned by the traditional PDV signal (SVD1 of SST), deepening or shoaling the thermocline off south Java through its influence on the Indonesian Throughflow (ITF; oceanic teleconnection), and by residual decadal variability in the western and central Pacific (SVD2 of SST) that changes the equatorial winds over the Indian Ocean (atmospheric teleconnection). Both effects produce a background state that is either favorable or unfavorable for the thermocline–mixed layer interactions, and hence for the excitation of strong IODZM events. Collectively, SVD1 and SVD2 are referred to as PDV here. This hypothesis is tested with a suite of ocean model experiments. First, two runs are carried out, forced by climatological winds to which idealized easterly or westerly winds are added only over the equatorial Indian Ocean. As might be expected, in the easterly (westerly) run a shallower (deeper) thermocline is obtained over the EEIO. Then, observed winds from individual years are used to force the model. In these runs, anomalously cool SST in the EEIO develops only during decades when the thermocline is anomalously shallow, allowing entrainment of colder waters into the mixed layer. Since 1999 the PDV phase has changed, and consistent with this hypothesis the depth of the mean thermocline in the EEIO has been increasing. As a consequence, no IODZM developed during the El Niño of 2002, and only a weak cooling event occurred during the summer of 2003. This hypothesis likely also explains why some strong IODZM events occur in the absence of ENSO forcing, provided that PDV has preconditioned the EEIO thermocline to be anomalously shallow.


2021 ◽  
Author(s):  
Aditya Kottapalli ◽  
Vinayachandran P N

Abstract The northward propagation of intraseasonal oscillations (ISO) is one of the major modes of variability in the tropics during boreal summer, associated with active and break spells of monsoon rainfall over the Indian region, and modulate the Indian summer monsoon rainfall (ISMR). The northward march starts close to the equator over warm waters of the Indian Ocean and continues till the foothills of the Himalayas. The northward propagations tend to be weaker during positive Indian Ocean Dipole (pIOD) years. We have used the "moisture mode" framework to understand the processes responsible for the weakening of northward propagations during IOD years. Our analyses show that moistening caused by the horizontal advection was the major contributor for the northward propagations during negative IOD (nIOD) years, and its amplitude is much smaller during pIOD years. The reduction in the zonal advection during pIOD is responsible for the weakening of northward propagations. Also, the mean structure of entropy between 925hpa – 500hpa levels remained similar over most of the monsoon region across the contrasting IOD years. The reason for weaker northward propagations can be attributed to the weaker zonal wind perturbations at intraseasonal timescales. The weaker zonal wind perturbations during ISO events in pIOD years owing to cooler sea surface temperatures (SST) in the South-East Equatorial Indian Ocean (SEIO) and warmer West Equatorial Indian Ocean (WEIO) and South-East Arabian Sea (SEAS) is proposed to be the possible reason for the weakening of northward propagations during pIOD years.


2020 ◽  
Author(s):  
Zheen Zhang ◽  
Thomas Pohlmann ◽  
Xueen Chen

Abstract. Lead-lag correlations between the subsurface temperature/salinity anomalies in the Bay of Bengal (BoB) and the Indian Ocean Dipole (IOD) are revealed in model results, ocean synthesis, and observations. Mechanisms for such correlations are further investigated using the Hamburg Shelf Ocean Model (HAMSOM), mainly on the salinity variability. It is found that the subsurface salinity anomaly of the BoB positively correlates to the IOD with a lag of three months on average, while the subsurface temperature anomaly negatively correlates. The model results suggest the remote forcing from the equatorial Indian Ocean dominates the interannual subsurface salinity variability in the BoB. The coastal Kelvin waves carry signals of positive (negative) salinity anomalies from the eastern equatorial Indian Ocean and propagate counterclockwise along the coasts of the BoB during positive (negative) IOD events. Subsequently westward Rossby waves propagate these signals to the basin at a relatively slow speed, which causes a considerable delay of the subsurface salinity anomalies in the correlation. By analyzing the salinity budget of the BoB, it is found that the diffusion dominates the salinity changes near the surface, while the advection dominates the subsurface; the vertical advection of salinity contributes positively to this correlation, while the horizontal advection contributes negatively. These results suggest that the IOD plays a crucial role in the interannual subsurface salinity variability in the BoB.


2019 ◽  
Vol 32 (7) ◽  
pp. 2057-2073 ◽  
Author(s):  
Yu Huang ◽  
Bo Wu ◽  
Tim Li ◽  
Tianjun Zhou ◽  
Bo Liu

The interdecadal variability of basinwide sea surface temperature anomalies (SSTAs) in the tropical Indian Ocean (TIO), referred to as the interdecadal Indian Ocean basin mode (ID-IOBM), is caused by remote forcing of the interdecadal Pacific oscillation (IPO), as demonstrated by the observational datasets and tropical Pacific pacemaker experiments of the Community Earth System Model (CESM). It is noted that the growth of the ID-IOBM shows a season-dependent characteristic, with a maximum tendency of mixed layer heat anomalies occurring in early boreal winter. Three factors contribute to this maximum tendency. In response to the positive IPO forcing, the eastern TIO is covered by the descending branch of the anomalous Walker circulation. Thus, the convection over the southeastern TIO is suppressed, which increases local downward shortwave radiative fluxes. Meanwhile, the equatorial easterly anomalies to the west of the suppressed convection weaken the background mean westerly and thus decrease the upward latent heat fluxes over the equatorial Indian Ocean. Third, anomalous westward Ekman currents driven by the equatorial easterly anomalies advect climatological warm water westward and thus warm the western TIO. In summer, the TIO is out of the control of the positive IPO remote forcing. The ID-IOBM gradually decays due to the Newtonian damping effect.


2005 ◽  
Vol 35 (5) ◽  
pp. 708-728 ◽  
Author(s):  
Weiqing Han

Abstract Sea level observations in the equatorial Indian Ocean show a dominant spectral peak at 90 days and secondary peaks at 30–60 days over an intraseasonal period (20–90 days). A detailed investigation of the origins and dynamics of these variations is carried out using an ocean general circulation model, namely, the Hybrid Coordinate Ocean Model (HYCOM). Two parallel experiments are performed in the tropical Indian Ocean basin for the period 1988–2001: one is forced by NCEP 3-day mean forcing fields together with the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) pentad precipitation, and the other is forced by monthly mean fields. To help to understand the role played by the wind-driven equatorial wave dynamics, a linear continuously stratified ocean model is also used. Both the observed and modeled 90-day sea level anomaly fields and HYCOM surface current clearly show equatorial Kelvin and first-meridional-mode Rossby wave structures that are forced by the 90-day winds. The wind amplitude at the 90-day period, however, is weaker than that for the 30–60-day period, suggesting that the equatorial Indian Ocean selectively responds to the 90-day winds. This selective response arises mainly from the resonant excitation of the second-baroclinic-mode (n = 2) waves by the 90-day winds. In this case, Rossby waves reflected from the eastern ocean boundary enhance the directly forced response in the ocean interior, strengthening the 90-day peak. In addition, the directly forced response increases monotonically with the increase of forcing period, contributing to the larger variances of currents and sea level at 90 days. Two factors account for this monotonic increase in directly forced response. First, at lower frequency, both Rossby and Kelvin waves associated with the low-order baroclinic modes have longer wavelengths, which are more efficiently excited by the larger-scale winds. Second, responses of the high-order modes directly follow the local winds, and their amplitudes are proportional to both forcing period and wind strength. Although most energy is surface trapped, there is a significant amount that propagates through the pycnocline into the deep ocean. The dominance of the 90-day peak occurs not only at the surface but also in the deeper layers down to 600 m. In the deeper ocean, both the directly forced response and reflected waves associated with the first two baroclinic modes contribute to the 90-day variation. Spectra of the observed sea surface temperature (SST) also show a 90-day peak, likely a result of the selective response of the equatorial Indian Ocean at the 90-day period. Near the surface, the spectral peaks of currents and sea level at the 30–60-day period are directly forced by winds that peak at 30–60 days. In the deeper layers, both directly forced and reflected waves associated with the first two baroclinic modes contribute. Oceanic instabilities can have significant contributions only near the western boundary and near 5°N south of Sri Lanka.


Sign in / Sign up

Export Citation Format

Share Document