Sensitivities of Simulated Convective Storms to Environmental CAPE

2011 ◽  
Vol 139 (11) ◽  
pp. 3514-3532 ◽  
Author(s):  
Cody Kirkpatrick ◽  
Eugene W. McCaul ◽  
Charles Cohen

Abstract A set of 225 idealized three-dimensional cloud-resolving simulations is used to explore convective storm behavior in environments with various values of CAPE (450, 800, 2000, and 3200 J kg−1). The simulations show that when CAPE = 2000 J kg−1 or greater, numerous combinations of other environmental parameters can support updrafts of at least 10 m s−1 throughout an entire 2-h simulation. At CAPE = 450 J kg−1, it is very difficult to obtain strong storms, although one case featuring a supercell is found. For CAPE = 800 J kg−1, mature storm updraft speeds correlate positively with strong low-level lapse rates and reduced precipitable water. In some cases, updrafts at this CAPE value can reach speeds that rival predictions of parcel theory, but such efficient conversion of CAPE to kinetic energy does not extend to all storms at CAPE = 800 J kg−1, nor to any storms in simulations at lower or higher CAPE. In simulations with CAPE = 2000 or 3200 J kg−1, the strongest time-averaged mature updrafts, while supercellular in character, feature generally less than 60% of the speeds expected from parcel theory, and even the strongest updraft found at CAPE = 450 J kg−1 fails to reach that relative strength. When CAPE = 2000 J kg−1 or more, updrafts benefit from enhanced shear, higher levels of free convection, and reduced precipitable water. Strong low-level shear and a reduced height of the level of free convection correlate closely with low-level storm vertical vorticity when CAPE is at least 2000 J kg−1, consistent with previous findings. However, at CAPE = 800 J kg−1, low-level vorticity shares the same correlations with the environment as updraft strength. With respect to storm precipitation, in simulations initiated with only 30 mm of precipitable water (PW), all of the storms that last for an entire 2-h simulation tend to produce liquid precipitation at roughly similar rates, regardless of their CAPE. In environments where PW is increased to 60 mm, storms tend to produce the most rainfall at CAPE = 2000 J kg−1, with somewhat lesser rainfall rates at lower and higher CAPE. Nevertheless, over the simulation domain, the ground area that receives at least 10 mm of rainfall tends to increase as CAPE increases, owing to a greater number and size of precipitating updrafts in the domain.

Abstract A series of extreme cloudbursts occurred on 14 April 2018 over the northern slopes of the island of Kaua‘i. The storm inundated some areas with 1262 mm (∼50”) of rainfall in a 24-hr period, eclipsing the previous 24-hr US rainfall record of 1100 mm (42”) set in Texas in 1979. Three periods of intense rainfall are diagnosed through detailed analysis of National Weather Service operational and special data sets. On the synoptic scale, a slowly southeastward propagating trough aloft over a deep layer of low level moisture (>40 mm of total precipitable water) produced prolonged instability over Kaua‘i. Enhanced NE to E low level flow impacted Kaua‘i’s complex terrain, which includes steep north and eastward facing slopes and cirques. The resulting orographic lift initiated deep convection. The wind profile exhibited significant shear in the troposphere and streamwise vorticity within the convective storm inflow. Evidence suggests that large directional shear in the boundary layer, paired with enhanced orographic vertical motion, produced rotating updrafts within the convective storms. Mesoscale rotation is manifest in the radar data during the latter two periods and reflectivity cores are observed to propagate both to the left and to the right of the mean shear, which is characteristic of supercells. The observations suggest that the terrain configuration in combination with the windshear separates the area of updrafts from the downdraft section of the storm, resulting in almost continuous heavy rainfall over Waipā Garden.


2017 ◽  
Vol 145 (4) ◽  
pp. 1511-1528 ◽  
Author(s):  
Mateusz Taszarek ◽  
Harold E. Brooks ◽  
Bartosz Czernecki

Abstract Observed proximity soundings from Europe are used to highlight how well environmental parameters discriminate different kind of severe thunderstorm hazards. In addition, the skill of parameters in predicting lightning and waterspouts is also tested. The research area concentrates on central and western European countries and the years 2009–15. In total, 45 677 soundings are analyzed including 169 associated with extremely severe thunderstorms, 1754 with severe thunderstorms, 8361 with nonsevere thunderstorms, and 35 393 cases with nonzero convective available potential energy (CAPE) that had no thunderstorms. Results indicate that the occurrence of lightning is mainly a function of CAPE and is more likely when the temperature of the equilibrium level drops below −10°C. The probability for large hail is maximized with high values of boundary layer moisture, steep mid- and low-level lapse rates, and high lifting condensation level. The size of hail is mainly dependent on the deep layer shear (DLS) in a moderate to high CAPE environment. The likelihood of tornadoes increases along with increasing CAPE, DLS, and 0–1-km storm-relative helicity. Severe wind events are the most common in high vertical wind shear and steep low-level lapse rates. The probability for waterspouts is maximized in weak vertical wind shear and steep low-level lapse rates. Wind shear in the 0–3-km layer is the best at distinguishing between severe and extremely severe thunderstorms producing tornadoes and convective wind gusts. A parameter WMAXSHEAR multiplying square root of 2 times CAPE (WMAX) and DLS turned out to be the best in distinguishing between nonsevere and severe thunderstorms, and for assessing the severity of convective phenomena.


2006 ◽  
Vol 21 (4) ◽  
pp. 579-594 ◽  
Author(s):  
Jonathan M. Davies

Abstract Recent studies have suggested that supercell tornado environments are usually associated with large 0–1-km storm-relative helicity (SRH) and relatively low lifting condensation levels (LCL heights). However, occasional tornadoes of significance occur in environments having characteristics that appear less supportive of supercell tornadoes, including small SRH values and/or relatively high LCL heights. Such tornadoes, whether associated with supercell or nonsupercell processes (more precisely termed mesocyclone and nonmesocyclone processes), present a challenge for forecasters. This empirical study uses a database of soundings derived from the Rapid Update Cycle model to examine thermodynamic characteristics of F1 and greater intensity tornado events associated with small SRH and/or high LCL heights. Results strongly suggest that many such tornado events are associated with steep lapse rates in the lowest few kilometers above ground. The low level of free convection heights, small convective inhibition, and sizable convective available potential energy below 3 km were also found to be of possible importance. These thermodynamic characteristics combined would likely reduce resistance to upward accelerations, potentially enhancing ascent for low-level parcels entering thunderstorm updrafts and, hence, low-level stretching. From prior research, if preexisting boundaries were available to provide surface vertical vorticity for stretching, such thermodynamic characteristics could be an important component of tornado events that involve nonmesocyclone processes. These same thermodynamic characteristics may also offer clues for the investigation of mesocyclone tornado events that do not fit well with accepted tornado forecasting parameters from prior studies.


2021 ◽  
pp. 0308518X2199781
Author(s):  
Xinyue Luo ◽  
Mingxing Chen

The nodes and links in urban networks are usually presented in a two-dimensional(2D) view. The co-occurrence of nodes and links can also be realized from a three-dimensional(3D) perspective to make the characteristics of urban network more intuitively revealed. Our result shows that the external connections of high-level cities are mainly affected by the level of cities(nodes) and less affected by geographical distance, while medium-level cities are affected by the interaction of the level of cities(nodes) and geographical distance. The external connections of low-level cities are greatly restricted by geographical distance.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 914
Author(s):  
Tao Chen ◽  
Da-Lin Zhang

In view of the limited predictability of heavy rainfall (HR) events and the limited understanding of the physical mechanisms governing the initiation and organization of the associated mesoscale convective systems (MCSs), a composite analysis of 58 HR events over the warm sector (i.e., far ahead of the surface cold front), referred to as WSHR events, over South China during the months of April to June 2008~2014 is performed in terms of precipitation, large-scale circulations, pre-storm environmental conditions, and MCS types. Results show that the large-scale circulations of the WSHR events can be categorized into pre-frontal, southwesterly warm and moist ascending airflow, and low-level vortex types, with higher frequency occurrences of the former two types. Their pre-storm environments are characterized by a deep moist layer with >50 mm column-integrated precipitable water, high convective available potential energy with the equivalent potential temperature of ≥340 K at 850 hPa, weak vertical wind shear below 400 hPa, and a low-level jet near 925 hPa with weak warm advection, based on atmospheric parameter composite. Three classes of the corresponding MCSs, exhibiting peak convective activity in the afternoon and the early morning hours, can be identified as linear-shaped, a leading convective line adjoined with trailing stratiform rainfall, and comma-shaped, respectively. It is found that many linear-shaped MCSs in coastal regions are triggered by local topography, enhanced by sea breezes, whereas the latter two classes of MCSs experience isentropic lifting in the southwesterly warm and moist flows. They all develop in large-scale environments with favorable quasi-geostrophic forcing, albeit weak. Conceptual models are finally developed to facilitate our understanding and prediction of the WSHR events over South China.


2017 ◽  
Vol 30 (17) ◽  
pp. 6999-7016 ◽  
Author(s):  
Zheng Liu ◽  
Axel Schweiger

Cloud response to synoptic conditions over the Beaufort and Chukchi seasonal ice zone is examined. Four synoptic states with distinct thermodynamic and dynamic signatures are identified using ERA-Interim reanalysis data from 2000 to 2014. CloudSat and CALIPSO observations suggest control of clouds by synoptic states. Warm continental air advection is associated with the fewest low-level clouds, while cold air advection generates the most low-level clouds. Low-level clouds are related to lower-tropospheric stability and both are regulated by synoptic conditions. High-level clouds are associated with humidity and vertical motions in the upper atmosphere. Observed cloud vertical and spatial variability is reproduced well in ERA-Interim, but winter low-level cloud fraction is overestimated. This suggests that synoptic conditions constrain the spatial extent of clouds through the atmospheric structure, while the parameterizations for cloud microphysics and boundary layer physics are critical for the life cycle of clouds in numerical models. Sea ice melt onset is related to synoptic conditions. Melt onsets occur more frequently and earlier with warm air advection. Synoptic conditions with the highest temperatures and precipitable water are most favorable for melt onsets even though fewer low-level clouds are associated with these conditions.


2020 ◽  
pp. 1-55
Author(s):  
Mateusz Taszarek ◽  
Natalia Pilguj ◽  
John T. Allen ◽  
Victor Gensini ◽  
Harold E. Brooks ◽  
...  

AbstractIn this study we compared 3.7 mln rawinsonde observations from 232 stations over Europe and North America with proximal vertical profiles from ERA5 and MERRA2 to examine how well reanalysis depicts observed convective parameters. Larger differences between soundings and reanalysis are found for thermodynamic theoretical parcel parameters, low-level lapse rates and low-level wind shear. In contrast, reanalysis best represents temperature and moisture variables, mid-tropospheric lapse rates, and mean wind. Both reanalyses underestimate CAPE, low-level moisture and wind shear, particularly when considering extreme values. Overestimation is observed for low-level lapse rates, mid-tropospheric moisture and the level of free convection. Mixed-layer parcels have overall better accuracy when compared to most-unstable, especially considering convective inhibition and lifted condensation level. Mean absolute error for both reanalyses has been steadily decreasing over the last 39 years for almost every analyzed variable. Compared to MERRA2, ERA5 has higher correlations and lower mean absolute errors. MERRA2 is typically drier and less unstable over central Europe and the Balkans, with the opposite pattern over western Russia. Both reanalyses underestimate CAPE and CIN over the Great Plains. Reanalyses are more reliable for lower elevations stations and struggle along boundaries such as coastal zones and mountains. Based on the results from this and prior studies we suggest that ERA5 is likely one of the most reliable available reanalysis for exploration of convective environments, mainly due to its improved resolution. For future studies we also recommend that computation of convective variables should use model levels that provide more accurate sampling of the boundary-layer conditions compared to less numerous pressure levels.


2016 ◽  
Vol 59 (3) ◽  
Author(s):  
Mohammad Ali Sharifi ◽  
Majid Azadi ◽  
Ali Sam Khaniani

<p>In this work, the effect of assimilation of synoptic, radiosonde and ground-based GPS precipitable water vapor (PWV) data has been investigated on the short-term prediction of precipitation, vertical relative humidity and PWV fields over north of Iran. We selected two rainfall events (i.e. February 1, 2014, and September 17, 2014) caused by synoptic systems affecting the southern coasts of the Caspian Sea. These systems are often associated with a shallow and cold high pressure located over Russia that extends towards the southern Caspian Sea. The three dimensional variational (3DVAR) data assimilation system of the weather research and forecasting (WRF) model is used in two rainfall cases. In each case, three numerical experiments, namely CTRL, CONVDA and GPSCONVDA, are performed. The CTRL experiment uses the global analysis as the initial and boundary conditions of the model. In the second experiment, surface and radiosonde observations are inserted into the model. Finally, the GPSCONVDA experiment uses the GPS PWV data in the assimilation process in addition to the conventional observations. It is found that in CONVDA experiment, the mean absolute error (MAE) of the accumulated precipitation is reduced about 5 and 13 percent in 24h model simulation of February and September cases, respectively, when compared to CTRL. Also, the results in both cases suggest that the assimilation of GPS data has the greatest impact on model PWV simulations, with maximum root mean squares error (RMSE) reduction of 0.7 mm. In the GPSCONVDA experiment, comparison of the vertical profiles of 12h simulated relative humidity with the corresponding radiosonde observations shows a slight improvement in the lower levels.</p>


Sign in / Sign up

Export Citation Format

Share Document