scholarly journals Quantifying Emerging Local Anthropogenic Emissions in the Arctic Region: The ACCESS Aircraft Campaign Experiment

2015 ◽  
Vol 96 (3) ◽  
pp. 441-460 ◽  
Author(s):  
A. Roiger ◽  
J.-L. Thomas ◽  
H. Schlager ◽  
K. S. Law ◽  
J. Kim ◽  
...  

Abstract Arctic sea ice has decreased dramatically in the past few decades and the Arctic is increasingly open to transit shipping and natural resource extraction. However, large knowledge gaps exist regarding composition and impacts of emissions associated with these activities. Arctic hydrocarbon extraction is currently under development owing to the large oil and gas reserves in the region. Transit shipping through the Arctic as an alternative to the traditional shipping routes is currently underway. These activities are expected to increase emissions of air pollutants and climate forcers (e.g., aerosols, ozone) in the Arctic troposphere significantly in the future. The authors present the first measurements of these activities off the coast of Norway taken in summer 2012 as part of the European Arctic Climate Change, Economy, and Society (ACCESS) project. The objectives include quantifying the impact that anthropogenic activities will have on regional air pollution and understanding the connections to Arctic climate. Trace gas and aerosol concentrations in pollution plumes were measured, including emissions from different ship types and several offshore extraction facilities. Emissions originating from industrial activities (smelting) on the Kola Peninsula were also sampled. In addition, pollution plumes originating from Siberian biomass burning were probed in order to put the emerging local pollution within a broader context. In the near future these measurements will be combined with model simulations to quantify the influence of local anthropogenic activities on Arctic composition. Here the authors present the scientific objectives of the ACCESS aircraft experiment and the the meteorological conditions during the campaign, and they highlight first scientific results from the experiment.

2019 ◽  
Vol 32 (4) ◽  
pp. 675-693
Author(s):  
Sabaa Ahmad Khan

AbstractThe environmental and economic realities of Arctic climate change present novel problems for international law. Arctic warming and pollution raise important questions about responsibilities and accountabilities across borders, as they result from anthropogenic activities both within and outside the Arctic region, from the Global North and the Global South. Environmental interdependencies and economic development prospects connect in a nexus of risk and opportunity that raises difficult normative questions pertaining to Arctic governance and sovereignty. This article looks at how the Arctic has been produced in international legal spaces. It addresses the implication of states and Indigenous peoples in processes of Arctic governance. Looking at specific international legal instruments relevant to Arctic climate change and development, the author attempts to tease out the relationship between the concepts of Indigenous rights and state sovereignty that underlie these international legal realms. What do these international legal regimes tell us with respect to the role of Arctic Indigenous peoples and the role of states in governing the ‘global’ Arctic? It is argued that while international law has come a long way in recognizing the special status of Indigenous peoples in the international system, it still hesitates to recognize Indigenous groups as international law makers. Comparing the status of Indigenous peoples under specific international regimes to their role within the Arctic Council, it becomes evident that more participatory forms of global governance are entirely possible and long overdue.


2021 ◽  
Author(s):  
Andy Richling ◽  
Uwe Ulbrich ◽  
Henning Rust ◽  
Johannes Riebold ◽  
Dörthe Handorf

<p>Over the last decades the Arctic climate change has been observed with a much faster warming of the Arctic compared to the global average (Arctic amplification) and related sea-ice retreat. These changes in sea ice can affect the large-scale atmospheric circulation over the mid-latitudes, in particular atmospheric blocking, and thus the frequency and severity of extreme events. As a step towards a better understanding of changes in weather and climate extremes over Central Europe associated with Arctic climate change, we first analyze the linkage between recent Arctic sea ice loss and blocking variability using logistic regression models. ERA5 reanalysis data are used on a monthly and seasonal time scale, and specific regional sea ice variabilities are explored. First results indicate an increased occurrence-probability in terms of blocking frequency over Greenland in summer as well as over Scandinavia/Ural in winter during low sea ice conditions. </p>


2011 ◽  
Vol 11 (2) ◽  
pp. 4913-4951 ◽  
Author(s):  
G. P. Peters ◽  
T. B. Nilssen ◽  
L. Lindholt ◽  
M. S. Eide ◽  
S. Glomsrød ◽  
...  

Abstract. The Arctic sea-ice is retreating faster than predicted by climate models and could become ice free during summer this century. The reduced sea-ice extent may effectively "unlock" the Arctic Ocean to increased human activities such as transit shipping and expanded oil and gas production. Travel time between Europe and the north Pacific Region can be reduced by up to 50% with low sea-ice levels and the use of this route could increase substantially as the sea-ice retreats. Oil and gas activities already occur in the Arctic region and given the large undiscovered petroleum resources increased activity could be expected with reduced sea-ice. We use a detailed global energy market model and a bottom-up shipping model with a sea-ice module to construct emission inventories of Arctic shipping and petroleum activities in 2030 and 2050. The emission inventories are on a 1× 1 degree grid and cover both short-lived pollutants and ozone pre-cursors (SO2, NOx, CO, NMVOC, BC, OC) and the long-lived greenhouse gases (CO2, CH4, N2O). We find rapid growth in transit shipping due to increased profitability with the shorter transit times compensating for increased costs in traversing areas of sea-ice. Oil and gas production remains relatively stable leading to reduced emissions from emission factor improvements. The location of oil and gas production moves into locations requiring more ship transport relative to pipeline transport, leading to rapid emissions growth from oil and gas transport via ship. Our emission inventories for the Arctic region will be used as input into chemical transport, radiative transfer, and climate models to quantify the role of Arctic activities in climate change compared to similar emissions occurring outside of the Arctic region.


2020 ◽  
Author(s):  
Marie Sicard ◽  
Masa Kageyama ◽  
Pascale Braconnot ◽  
Sylvie Charbit

<p>The Last Interglacial (129 – 116 ka BP) is a time period with a strong orbital forcing which leads to a different seasonal and latitudinal distribution of insolation compared to the present. In particular, these changes amplify the Arctic climate seasonality. They induce warmer summers and colder winters in the high latitudes of the Northern Hemisphere. Such surface conditions favour a huge retreat of the arctic sea ice cover.<br>In this study, we try to understand how this solar radiation anomaly spreads through the surface and impacts the seasonal arctic sea ice. Using IPSL-CM6A-LR model outputs, we decompose the surface energy budget to identify the role of atmospheric and oceanic key processes beyond 60°N and its changes compared to pre-industrial. We show that solar radiation anomaly is greatly reduced when it reaches the Earth’s surface, which emphasizes the role of clouds and water vapor transport.<br>The results are also compared to other PMIP4-CMIP6 model simulations. We would like to thank PMIP participants for producing and making available their model outputs.</p>


2011 ◽  
Vol 11 (11) ◽  
pp. 5305-5320 ◽  
Author(s):  
G. P. Peters ◽  
T. B. Nilssen ◽  
L. Lindholt ◽  
M. S. Eide ◽  
S. Glomsrød ◽  
...  

Abstract. The Arctic sea-ice is retreating faster than predicted by climate models and could become ice free during summer this century. The reduced sea-ice extent may effectively "unlock" the Arctic Ocean to increased human activities such as transit shipping and expanded oil and gas production. Travel time between Europe and the north Pacific Region can be reduced by up to 50 % with low sea-ice levels and the use of this route could increase substantially as the sea-ice retreats. Oil and gas activities already occur in the Arctic region and given the large undiscovered petroleum resources increased activity could be expected with reduced sea-ice. We use a bottom-up shipping model and a detailed global energy market model to construct emission inventories of Arctic shipping and petroleum activities in 2030 and 2050 given estimated sea-ice extents. The emission inventories are on a 1×1 degree grid and cover both short-lived components (SO2, NOx, CO, NMVOC, BC, OC) and the long-lived greenhouse gases (CO2, CH4, N2O). We find rapid growth in transit shipping due to increased profitability with the shorter transit times compensating for increased costs in traversing areas of sea-ice. Oil and gas production remains relatively stable leading to reduced emissions from emission factor improvements. The location of oil and gas production moves into locations requiring more ship transport relative to pipeline transport, leading to rapid emissions growth from oil and gas transport via ship. Our emission inventories for the Arctic region will be used as input into chemical transport, radiative transfer, and climate models to quantify the role of Arctic activities in climate change compared to similar emissions occurring outside of the Arctic region.


2017 ◽  
Vol 31 (1) ◽  
pp. 99-114 ◽  
Author(s):  
Yuan Wang ◽  
Jonathan H. Jiang ◽  
Hui Su ◽  
Yong-Sang Choi ◽  
Lei Huang ◽  
...  

AbstractObservations show that the Arctic sea ice cover has been shrinking at an unprecedented rate since the 1970s. Even though the accumulation of greenhouse gases in the atmosphere has been closely linked with the loss of Arctic sea ice, the role of atmospheric aerosols in past and future Arctic climate change remains elusive. Using a state-of-the-art fully coupled climate model, the authors assess the equilibrium responses of the Arctic sea ice to the different aerosol emission scenarios and investigate the pathways by which aerosols impose their influence in the Arctic. These sensitivity experiments show that the impacts of aerosol perturbations on the pace of sea ice melt effectively modulate the ocean circulation and atmospheric feedbacks. Because of the contrasting evolutions of particulate pollution in the developed and developing countries since the 1970s, the opposite aerosol forcings from different midlatitude regions are nearly canceled out in the Arctic during the boreal summer, resulting in a muted aerosol effect on the recent sea ice changes. Consequently, the greenhouse forcing alone can largely explain the observed Arctic sea ice loss up to the present. In the next few decades, the projected alleviation of particulate pollution in the Northern Hemisphere can contribute up to 20% of the total Arctic sea ice loss and 0.7°C surface warming over the Arctic. The authors’ model simulations further show that aerosol microphysical effects on the Arctic clouds are the major component in the total aerosol radiative forcing over the Arctic. Compared to the aerosol-induced energy imbalance in lower latitudes outside the Arctic, the local radiative forcing by aerosol variations within the Arctic, due to either local emissions or long-range transports, is more efficient in determining the sea ice changes and Arctic climate change.


2019 ◽  
Vol 16 (6) ◽  
pp. 50-59
Author(s):  
O. P. Trubitsina ◽  
V. N. Bashkin

The article is devoted to the consideration of geopolitical challenges for the analysis of geoenvironmental risks (GERs) in the hydrocarbon development of the Arctic territory. Geopolitical risks (GPRs), like GERs, can be transformed into opposite external environment factors of oil and gas industry facilities in the form of additional opportunities or threats, which the authors identify in detail for each type of risk. This is necessary for further development of methodological base of expert methods for GER management in the context of the implementational proposed two-stage model of the GER analysis taking to account GPR for the improvement of effectiveness making decisions to ensure optimal operation of the facility oil and gas industry and minimize the impact on the environment in the geopolitical conditions of the Arctic.The authors declare no conflict of interest


2020 ◽  
pp. 024
Author(s):  
Rym Msadek ◽  
Gilles Garric ◽  
Sara Fleury ◽  
Florent Garnier ◽  
Lauriane Batté ◽  
...  

L'Arctique est la région du globe qui s'est réchauffée le plus vite au cours des trente dernières années, avec une augmentation de la température de surface environ deux fois plus rapide que pour la moyenne globale. Le déclin de la banquise arctique observé depuis le début de l'ère satellitaire et attribué principalement à l'augmentation de la concentration des gaz à effet de serre aurait joué un rôle important dans cette amplification des températures au pôle. Cette fonte importante des glaces arctiques, qui devrait s'accélérer dans les décennies à venir, pourrait modifier les vents en haute altitude et potentiellement avoir un impact sur le climat des moyennes latitudes. L'étendue de la banquise arctique varie considérablement d'une saison à l'autre, d'une année à l'autre, d'une décennie à l'autre. Améliorer notre capacité à prévoir ces variations nécessite de comprendre, observer et modéliser les interactions entre la banquise et les autres composantes du système Terre, telles que l'océan, l'atmosphère ou la biosphère, à différentes échelles de temps. La réalisation de prévisions saisonnières de la banquise arctique est très récente comparée aux prévisions du temps ou aux prévisions saisonnières de paramètres météorologiques (température, précipitation). Les résultats ayant émergé au cours des dix dernières années mettent en évidence l'importance des observations de l'épaisseur de la glace de mer pour prévoir l'évolution de la banquise estivale plusieurs mois à l'avance. Surface temperatures over the Arctic region have been increasing twice as fast as global mean temperatures, a phenomenon known as arctic amplification. One main contributor to this polar warming is the large decline of Arctic sea ice observed since the beginning of satellite observations, which has been attributed to the increase of greenhouse gases. The acceleration of Arctic sea ice loss that is projected for the coming decades could modify the upper level atmospheric circulation yielding climate impacts up to the mid-latitudes. There is considerable variability in the spatial extent of ice cover on seasonal, interannual and decadal time scales. Better understanding, observing and modelling the interactions between sea ice and the other components of the climate system is key for improved predictions of Arctic sea ice in the future. Running operational-like seasonal predictions of Arctic sea ice is a quite recent effort compared to weather predictions or seasonal predictions of atmospheric fields like temperature or precipitation. Recent results stress the importance of sea ice thickness observations to improve seasonal predictions of Arctic sea ice conditions during summer.


Author(s):  
Mark Longrée ◽  
Sven Hoog

In turn of the global warming and driven by the constant need for resources an increasing number of commercial and scientific activities conquer the Arctic in order to benefit from almost untouched resources like oil and gas but also from the overwhelming nature. These activities are accompanied by a steadily increasing number of vessels transporting goods but also operating personnel, scientists or tourists. Especially the number of tourists visiting the Arctic can reach far more than 1000 per vessel, resulting in growing headaches for the responsible safety and security authorities in the Arctic surrounding countries. Up to now no suitable Escape, Evacuation and Rescue (EER) concept is in place to cope with these challenges when it comes to hazardous situations. In this context IMPaC ([1]) developed a new and appropriate EER concept for the Arctic, exceeding the currently dominant small and isolated settlements along the coastlines in Denmark (Greenland), Norway, Russia, Canada and the US. One question seems to be central: Is there any requirement and benefit beyond the currently used small rescue station? Yes, we strongly believe that there is a growing demand for suitable infrastructure coming from various industries. Beyond rescue objectives there is a demand for people working and living in this area all year long, for a few days, weeks or months using these settlements for their specific needs. This led us to the idea of the provision of a common-use infrastructure for multiple industries. The commonly used infrastructure maximizes the use of the remote and very expensive infrastructure and minimizes the impact on the environment in this part of the world. Potential users of this infrastructure would be: • Oil & Gas Industry, driven by the increased world energy demand • Marine Transport & Tourism Industry, driven by declined arctic ice and new sea routes via the Arctic sea • Fishery Industry • Scientific community Any EER concept for the Arctic has to cope with several specific environmental and spatial challenges as addressed by the EU joint research project ACCESS ([2]), where IMPaC participates. The paper introduces the new EER concept and focuses especially on its beneficial, efficient and safe operability in the Arctic recording an increasing number of commercial and scientific activities.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tsubasa Kodaira ◽  
Takuji Waseda ◽  
Takehiko Nose ◽  
Jun Inoue

AbstractArctic sea ice is rapidly decreasing during the recent period of global warming. One of the significant factors of the Arctic sea ice loss is oceanic heat transport from lower latitudes. For months of sea ice formation, the variations in the sea surface temperature over the Pacific Arctic region were highly correlated with the Pacific Decadal Oscillation (PDO). However, the seasonal sea surface temperatures recorded their highest values in autumn 2018 when the PDO index was neutral. It is shown that the anomalous warm seawater was a rapid ocean response to the southerly winds associated with episodic atmospheric blocking over the Bering Sea in September 2018. This warm seawater was directly observed by the R/V Mirai Arctic Expedition in November 2018 to significantly delay the southward sea ice advance. If the atmospheric blocking forms during the PDO positive phase in the future, the annual maximum Arctic sea ice extent could be dramatically reduced.


Sign in / Sign up

Export Citation Format

Share Document