scholarly journals High-altitude Inflatable Kites and Their Role in Atmospheric Boundary Layer Research

Author(s):  
Michael J. Irvin

AbstractKites have been used as weather sensing solutions for over 250 years. The fact that they are simpler to operate and train on than alternative aerial systems, their ability to keep station at a fixed point for a long term, simplified altitude control, and the ease of retrieving their payload attribute to their growing appeal in atmospheric research. NASA, Toyota, and the School of Mechanical and Aerospace Engineering Oklahoma State University are active in developing and deploying high-altitude inflatable kite systems for atmospheric boundary layer (ABL) research—crucial to advancing the accuracy of weather forecasting. Improvements in kite design, as well as instrumentation and supporting infrastructure, are key to further accelerating the use of kites in atmospheric research. The work underway by these researchers is intended to be a deliberate step in the evolutionary development of these beneficial systems.

2018 ◽  
Vol 11 (9) ◽  
pp. 5075-5085 ◽  
Author(s):  
Boming Liu ◽  
Yingying Ma ◽  
Jiqiao Liu ◽  
Wei Gong ◽  
Wei Wang ◽  
...  

Abstract. The atmospheric boundary layer is an important atmospheric feature that affects environmental health and weather forecasting. In this study, we proposed a graphics algorithm for the derivation of atmospheric boundary layer height (BLH) from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data. Owing to the differences in scattering intensity between molecular and aerosol particles, the total attenuated backscatter coefficient 532 and attenuated backscatter coefficient 1064 were used simultaneously for BLH detection. The proposed algorithm transformed the gradient solution into graphics distribution solution to overcome the effects of large noise and improve the horizontal resolution. This method was then tested with real signals under different horizontal smoothing numbers (1, 3, 15 and 30). Finally, the results of BLH obtained by CALIPSO data were compared with the results retrieved by the ground-based lidar measurements. Under the horizontal smoothing number of 15, 12 and 9, the correlation coefficients between the BLH derived by the proposed algorithm and ground-based lidar were both 0.72. Under the horizontal smoothing number of 6, 3 and 1, the correlation coefficients between the BLH derived by graphics distribution method (GDM) algorithm and ground-based lidar were 0.47, 0.14 and 0.12, respectively. When the horizontal smoothing number was large (15, 12 and 9), the CALIPSO BLH derived by the proposed method demonstrated a good correlation with ground-based lidar. The algorithm provided a reliable result when the horizontal smoothing number was greater than 9. This finding indicated that the proposed algorithm can be applied to the CALIPSO satellite data with 3 and 5 km horizontal resolution.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 416 ◽  
Author(s):  
Astrid Lampert ◽  
Barbara Altstädter ◽  
Konrad Bärfuss ◽  
Lutz Bretschneider ◽  
Jesper Sandgaard ◽  
...  

Unmanned aerial systems (UAS) fill a gap in high-resolution observations of meteorological parameters on small scales in the atmospheric boundary layer (ABL). Especially in the remote polar areas, there is a strong need for such detailed observations with different research foci. In this study, three systems are presented which have been adapted to the particular needs for operating in harsh polar environments: The fixed-wing aircraft M 2 AV with a mass of 6 kg, the quadrocopter ALICE with a mass of 19 kg, and the fixed-wing aircraft ALADINA with a mass of almost 25 kg. For all three systems, their particular modifications for polar operations are documented, in particular the insulation and heating requirements for low temperatures. Each system has completed meteorological observations under challenging conditions, including take-off and landing on the ice surface, low temperatures (down to −28 ∘ C), icing, and, for the quadrocopter, under the impact of the rotor downwash. The influence on the measured parameters is addressed here in the form of numerical simulations and spectral data analysis. Furthermore, results from several case studies are discussed: With the M 2 AV, low-level flights above leads in Antarctic sea ice were performed to study the impact of areas of open water within ice surfaces on the ABL, and a comparison with simulations was performed. ALICE was used to study the small-scale structure and short-term variability of the ABL during a cruise of RV Polarstern to the 79 ∘ N glacier in Greenland. With ALADINA, aerosol measurements of different size classes were performed in Ny-Ålesund, Svalbard, in highly complex terrain. In particular, very small, freshly formed particles are difficult to monitor and require the active control of temperature inside the instruments. The main aim of the article is to demonstrate the potential of UAS for ABL studies in polar environments, and to provide practical advice for future research activities with similar systems.


2020 ◽  
Vol 77 (7) ◽  
pp. 2375-2392
Author(s):  
Lei Liu ◽  
Fei Hu

AbstractThe intermittency of atmospheric turbulence plays an important role in the understanding of particle dispersal in the atmospheric boundary layer and in the statistical simulation of high-frequency wind speed in various applications. There are two kinds of intermittency, namely, the magnitude intermittency (MI) related to non-Gaussianity and the less studied clusterization intermittency (CI) related to long-term correlation. In this paper, we use a 20 Hz ultrasonic dataset lasting for 1 month to study CI of turbulent velocity fluctuations at different scales. Basing on the analysis of return-time distribution of telegraphic approximation series, we propose to use the shape parameter of the Weibull distribution to measure CI. Observations of this parameter show that contrary to MI, CI tends to weaken as the scale increases. Besides, significant diurnal variations, showing that CI tends to strengthen during the daytime (under unstable conditions) and weaken during the nighttime (under stable conditions), are found at different observation heights. In the convective boundary layer, the mixed-layer similarity is found to scale the CI exponent better than the Monin–Obukhov similarity. At night, CI is found to vary less with height in the regime with large mean wind speeds than in the regime with small mean wind speeds, according to the hockey-stick theory.


2017 ◽  
Author(s):  
Martine Collaud Coen ◽  
Elisabeth Andrews ◽  
Diego Aliaga ◽  
Marcos Andrade ◽  
Hristo Angelov ◽  
...  

Abstract. High altitude stations are often emphasized as free tropospheric measuring sites but they remain influenced by atmospheric boundary layer (ABL) air masses due to convective transport processes. The local and meso-scale topographical features around the station are involved in the convective boundary layer development and in the formation of thermally induced winds leading to ABL air lifting. The station altitude is not a sufficient parameter to characterize the ABL influence. Topography data from the global digital elevation model GTopo30 were used to calculate 5 parameters for 46 high altitude stations situated in five continents. The geometric mean of these 5 parameters determines a topography based index called ABL-TopoIndex which can be used to rank the high altitude stations as a function of the ABL influence. To construct the ABL-TopoIndex, we rely on the criteria that the ABL influence will be low if the station is one of the highest points in the mountainous massif, if there is a large altitude difference between the station and the valleys or plateaus, if the slopes around the station are steep, and finally if the drainage basin for air convection is small. All stations on volcanic islands exhibit a low ABL-TopoIndex whereas stations in the Himalaya and the Tibetan Plateau have high ABL-TopoIndex values. Spearman's rank correlation between aerosol optical properties and number concentration from 28 stations and the ABL-TopoIndex, the altitude and the latitude are used to validate this topographical approach. Statistically significant (s.s.) correlations are found between the 5 and 50 percentiles of all aerosol parameters and the ABL-TopoIndex whereas no s.s. correlation is found with the station altitude. The diurnal cycles of aerosol parameters seem to be best explained by the station latitude although a s.s. correlation is found between the amplitude of the diurnal cycles of the absorption coefficient and the ABL-TopoIndex. Finally, the main flow paths for air convection were calculated for various ABL heights.


2020 ◽  
Author(s):  
Olga Ermakova ◽  
Nikita Rusakov ◽  
Evgeny Poplavsky ◽  
Yuliya Troitskaya ◽  
Daniil Sergeev ◽  
...  

<p>Insufficient knowledge of the atmosphere layer momentum, heat and moisture transfer between the wavy water surface and marine atmospheric boundary layer under hurricane conditions lead to the uncertainties while using weather forecasting models and models of climate. In particular, there is a significant lack of data for heat and moisture exchange coefficients. In this regard, it is necessary to analyze and process the vertical profiles of wind speed and thermodynamic quantities. The present study is concerned with the analysis and processing of measurements from the NOAA falling GPS-sondes for hurricanes of categories 4 and 5 of 2003-2017, which represent an array of data on wind speed, temperature, altitude, coordinates, etc.</p><p>The proposed approach for describing a turbulent boundary layer formed in hurricane conditions is based on the use of the self-similarity properties of the velocity and enthalpy profiles in the atmospheric boundary layer, which includes a layer of constant flows, transferring into its “wake” part with height. Based on the proposed approach, the aerodynamic drag coefficients Cd and the enthalpy exchange coefficient Ck for a selected group of hurricanes were restored. As the value of Ck/Cd represents a determining factor in the formation of a hurricane, the dependence of this ratio on the wind speed was constructed.</p><p>This work was supported by the RFBR projects No 19-05-00249, 19-05-00366, 18-35-20068 (remote sensing data analysis) and RSF No 19-17-00209 (GPS-sonde data assimilation and processing).</p>


2018 ◽  
Author(s):  
Boming Liu ◽  
Yingying Ma ◽  
Jiqiao Liu ◽  
Wei Gong ◽  
Wei Wang ◽  
...  

Abstract. The atmospheric boundary layer is an important atmospheric feature that affects environmental health and weather forecasting. In this study, we proposed a graphics algorithm for the derivation of atmospheric boundary layer height (BLH) from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data. Owing to the differences in scattering intensity between molecular and aerosol particles, the total attenuated backscatter coefficient 532 and attenuated backscatter coefficient 1064 were used simultaneously for BLH detection. The proposed algorithm transformed the gradient solution into graphics distribution solution to overcome the effects of large noise and improve the horizontal resolution. This method was then tested with real signals under different horizontal smoothing numbers (1, 3, 15 and 30). The algorithm provided a reliable result when the horizontal smoothing number was greater than 5. Finally, the results of BLH obtained by CALIPSO data were compared with the results retrieved by the ground-based Lidar and radiosonde (RS) measurements. Under the horizontal smoothing number of 15, 9 and 3, the correlation coefficients between the BLH derived by the proposed algorithm and ground-based Lidar were 0.72, 0.72 and 0.14, respectively, and those between the BLH derived by the proposed algorithm and radiosonde measurements were 0.59, 0.59 and 0.07. When the horizontal smoothing number was 15 and 9, the CALIPSO BLH derived by the proposed method demonstrated a good correlation with ground-based Lidar and RS. This finding indicated that the proposed algorithm can be applied to the CALIPSO satellite data with 3 and 5 km horizontal resolution.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2720 ◽  
Author(s):  
Phillip B. Chilson ◽  
Tyler M. Bell ◽  
Keith A. Brewster ◽  
Gustavo Britto Hupsel de Azevedo ◽  
Frederick H. Carr ◽  
...  

The deployment of small unmanned aircraft systems (UAS) to collect routine in situ vertical profiles of the thermodynamic and kinematic state of the atmosphere in conjunction with other weather observations could significantly improve weather forecasting skill and resolution. High-resolution vertical measurements of pressure, temperature, humidity, wind speed and wind direction are critical to the understanding of atmospheric boundary layer processes integral to air–surface (land, ocean and sea ice) exchanges of energy, momentum, and moisture; how these are affected by climate variability; and how they impact weather forecasts and air quality simulations. We explore the potential value of collecting coordinated atmospheric profiles at fixed surface observing sites at designated times using instrumented UAS. We refer to such a network of autonomous weather UAS designed for atmospheric profiling and capable of operating in most weather conditions as a 3D Mesonet. We outline some of the fundamental and high-impact science questions and sampling needs driving the development of the 3D Mesonet and offer an overview of the general concept of operations. Preliminary measurements from profiling UAS are presented and we discuss how measurements from an operational network could be realized to better characterize the atmospheric boundary layer, improve weather forecasts, and help to identify threats of severe weather.


Sign in / Sign up

Export Citation Format

Share Document