scholarly journals Temperate Mountain Glacier-Melting Rates for the Period 2001–30: Estimates from Three Coupled GCM Simulations for the Greater Himalayas

2007 ◽  
Vol 46 (6) ◽  
pp. 890-899 ◽  
Author(s):  
Diandong Ren ◽  
David J. Karoly ◽  
Lance M. Leslie

Abstract The temperate glaciers in the greater Himalayas (GH) and the neighboring region contribute to the freshwater supply for almost one-half of the people on earth. Under global warming conditions, the GH glaciers may melt more rapidly than high-latitude glaciers, owing to the coincidence of the accumulation and ablation seasons in summer. Based on a first-order energy balance approach for glacier thermodynamics, the possible imposed additional melting rate was estimated from three climate simulations using the Geophysical Fluid Dynamics Laboratory Global Coupled Climate Model version 2.1 (GFDL-CM2.1), the Model for Interdisciplinary Research on Climate 3.2, high-resolution version (MIROC3.2-hires), and the Met Office’s Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3). The simulations were carried out under the Special Report on Emissions Scenarios (SRES) A1B scenario. For the 30-yr period of 2001–30, all three CGCMs indicate that the glacial regions most sensitive to regional warming are the Tianshan–Altai Mountains to the north and Hengduan Mountains to the south. A map of potential melting was produced and was used to calculate the glacier-melting speed, yielding an additional spatially averaged glacier depth reduction of approximately 2 m for the 2001–30 period for those areas located below 4000 m. Averaged over the entire GH region, the melting rate is accelerating at about 5 mm yr−2. The general circulation over the GH region was found to have clear multidecadal variability, with the 30-yr period of 2001–30 likely to be wetter than the previous 30-yr period of 1971–2000. Considering the possible trend in precipitation from snow to rain, the actual melting rates of the GH glaciers may even be larger than those obtained in this research.

2008 ◽  
Vol 21 (1) ◽  
pp. 72-83 ◽  
Author(s):  
Adam A. Scaife ◽  
Chris K. Folland ◽  
Lisa V. Alexander ◽  
Anders Moberg ◽  
Jeff R. Knight

Abstract The authors estimate the change in extreme winter weather events over Europe that is due to a long-term change in the North Atlantic Oscillation (NAO) such as that observed between the 1960s and 1990s. Using ensembles of simulations from a general circulation model, large changes in the frequency of 10th percentile temperature and 90th percentile precipitation events over Europe are found from changes in the NAO. In some cases, these changes are comparable to the expected change in the frequency of events due to anthropogenic forcing over the twenty-first century. Although the results presented here do not affect anthropogenic interpretation of global and annual mean changes in observed extremes, they do show that great care is needed to assess changes due to modes of climate variability when interpreting extreme events on regional and seasonal scales. How changes in natural modes of variability, such as the NAO, could radically alter current climate model predictions of changes in extreme weather events on multidecadal time scales is also discussed.


2012 ◽  
Vol 5 (3) ◽  
pp. 793-808 ◽  
Author(s):  
Y. Kamae ◽  
H. Ueda

Abstract. The mid-Pliocene (3.3 to 3.0 million yr ago), a globally warm period before the Quaternary, is recently attracting attention as a new target for paleoclimate modelling and data-model synthesis. This paper reports set-ups and results of experiments proposed in Pliocene Model Intercomparison Project (PlioMIP) using a global climate model, MRI-CGCM2.3. We conducted pre-industrial and mid-Pliocene runs by using the coupled atmosphere-ocean general circulation model (AOGCM) and its atmospheric component (AGCM) for the PlioMIP Experiments 2 and 1, respectively. In addition, we conducted two types of integrations in AOGCM simulation, with and without flux adjustments on sea surface. General characteristics of differences in the simulated mid-Pliocene climate relative to the pre-industrial in the three integrations are compared. In addition, patterns of predicted mid-Pliocene biomes resulting from the three climate simulations are compared in this study. Generally, difference of simulated surface climate between AGCM and AOGCM is larger than that between the two AOGCM runs, with and without flux adjustments. The simulated climate shows different pattern between AGCM and AOGCM particularly over low latitude oceans, subtropical land regions and high latitude oceans. The AOGCM simulations do not reproduce wetter environment in the subtropics relative to the present-day, which is suggested by terrestrial proxy data. The differences between the two types of AOGCM runs are small over the land, but evident over the ocean particularly in the North Atlantic and polar regions.


2020 ◽  
Vol 20 (1) ◽  
pp. 281-301 ◽  
Author(s):  
Le Kuai ◽  
Kevin W. Bowman ◽  
Kazuyuki Miyazaki ◽  
Makoto Deushi ◽  
Laura Revell ◽  
...  

Abstract. The top-of-atmosphere (TOA) outgoing longwave flux over the 9.6 µm ozone band is a fundamental quantity for understanding chemistry–climate coupling. However, observed TOA fluxes are hard to estimate as they exhibit considerable variability in space and time that depend on the distributions of clouds, ozone (O3), water vapor (H2O), air temperature (Ta), and surface temperature (Ts). Benchmarking present-day fluxes and quantifying the relative influence of their drivers is the first step for estimating climate feedbacks from ozone radiative forcing and predicting radiative forcing evolution. To that end, we constructed observational instantaneous radiative kernels (IRKs) under clear-sky conditions, representing the sensitivities of the TOA flux in the 9.6 µm ozone band to the vertical distribution of geophysical variables, including O3, H2O, Ta, and Ts based upon the Aura Tropospheric Emission Spectrometer (TES) measurements. Applying these kernels to present-day simulations from the Chemistry-Climate Model Initiative (CCMI) project as compared to a 2006 reanalysis assimilating satellite observations, we show that the models have large differences in TOA flux, attributable to different geophysical variables. In particular, model simulations continue to diverge from observations in the tropics, as reported in previous studies of the Atmospheric Chemistry Climate Model Intercomparison Project (ACCMIP) simulations. The principal culprits are tropical middle and upper tropospheric ozone followed by tropical lower tropospheric H2O. Five models out of the eight studied here have TOA flux biases exceeding 100 mW m−2 attributable to tropospheric ozone bias. Another set of five models have flux biases over 50 mW m−2 due to H2O. On the other hand, Ta radiative bias is negligible in all models (no more than 30 mW m−2). We found that the atmospheric component (AM3) of the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model and Canadian Middle Atmosphere Model (CMAM) have the lowest TOA flux biases globally but are a result of cancellation of opposite biases due to different processes. Overall, the multi-model ensemble mean bias is -133±98 mW m−2, indicating that they are too atmospherically opaque due to trapping too much radiation in the atmosphere by overestimated tropical tropospheric O3 and H2O. Having too much O3 and H2O in the troposphere would have different impacts on the sensitivity of TOA flux to O3 and these competing effects add more uncertainties on the ozone radiative forcing. We find that the inter-model TOA outgoing longwave radiation (OLR) difference is well anti-correlated with their ozone band flux bias. This suggests that there is significant radiative compensation in the calculation of model outgoing longwave radiation.


2012 ◽  
Vol 5 (1) ◽  
pp. 383-423 ◽  
Author(s):  
Y. Kamae ◽  
H. Ueda

Abstract. The mid-Pliocene (3.3 to 3.0 million yr ago), a globally warm period before the Quaternary, is recently attracting attention as a new target for paleoclimate modelling and data-model synthesis. This paper reports set-ups and results of experiments proposed in Pliocene Model Intercomparison Project (PlioMIP) using with a global climate model, MRI-CGCM2.3. We conducted pre-industrial and mid-Pliocene runs by using of the coupled atmosphere-ocean general circulation model (AOGCM) and its atmospheric component (AGCM) for the PlioMIP Experiments 2 and 1, respectively. In addition, we conducted two types of integrations in AOGCM simulation, with and without flux adjustments on sea surface. General characteristics of differences in the simulated mid-Pliocene climate relative to the pre-industrial in the three integrations are compared in this study. Generally, difference of simulated surface climate between AGCM and AOGCM is larger than that between the two AOGCM runs, with and without flux adjustments. The simulated climate shows different pattern between AGCM and AOGCM particularly over low latitude oceans, subtropical land regions, and high latitude oceans. The AOGCM simulations do not reproduce wetter environment in the subtropics relative to the present-day, which is suggested by terrestrial proxy data. The differences between the two types of AOGCM runs are little over the land but evident over the ocean particularly in the North Atlantic and polar regions.


2013 ◽  
Vol 26 (2) ◽  
pp. 380-398 ◽  
Author(s):  
Jan-Huey Chen ◽  
Shian-Jiann Lin

Abstract Retrospective seasonal predictions of tropical cyclones (TCs) in the three major ocean basins of the Northern Hemisphere are performed from 1990 to 2010 using the Geophysical Fluid Dynamics Laboratory High-Resolution Atmospheric Model (HiRAM) at 25-km resolution. Atmospheric states are initialized for each forecast, with the sea surface temperature anomaly (SSTA) “persisted” from that at the starting time during the 5-month forecast period (July–November). Using a five-member ensemble, it is shown that the storm counts of both tropical storm (TS) and hurricane categories are highly predictable in the North Atlantic basin during the 21-yr period. The correlations between the 21-yr observed and model predicted storm counts are 0.88 and 0.89 for hurricanes and TSs, respectively. The prediction in the eastern North Pacific is skillful, but it is not as outstanding as that in the North Atlantic. The persistent SSTA assumption appears to be less robust for the western North Pacific, contributing to less skillful predictions in that region. The relative skill in the prediction of storm counts is shown to be consistent with the quality of the predicted large-scale environment in the three major basins. It is shown that intensity distribution of TCs can be captured well by the model if the central sea level pressure is used as the threshold variable instead of the commonly used 10-m wind speed. This demonstrates the feasibility of using the 25-km-resolution HiRAM, a general circulation model designed initially for long-term climate simulations, to study the impacts of climate change on the intensity distribution of TCs.


2006 ◽  
Vol 19 (16) ◽  
pp. 3903-3931 ◽  
Author(s):  
H. Schmidt ◽  
G. P. Brasseur ◽  
M. Charron ◽  
E. Manzini ◽  
M. A. Giorgetta ◽  
...  

Abstract This paper introduces the three-dimensional Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), which treats atmospheric dynamics, radiation, and chemistry interactively for the height range from the earth’s surface to the thermosphere (approximately 250 km). It is based on the latest version of the ECHAM atmospheric general circulation model of the Max Planck Institute for Meteorology in Hamburg, Germany, which is extended to include important radiative and dynamical processes of the upper atmosphere and is coupled to a chemistry module containing 48 compounds. The model is applied to study the effects of natural and anthropogenic climate forcing on the atmosphere, represented, on the one hand, by the 11-yr solar cycle and, on the other hand, by a doubling of the present-day concentration of carbon dioxide. The numerical experiments are analyzed with the focus on the effects on temperature and chemical composition in the mesopause region. Results include a temperature response to the solar cycle by 2 to 10 K in the mesopause region with the largest values occurring slightly above the summer mesopause. Ozone in the secondary maximum increases by up to 20% for solar maximum conditions. Changes in winds are in general small. In the case of a doubling of carbon dioxide the simulation indicates a cooling of the atmosphere everywhere above the tropopause but by the smallest values around the mesopause. It is shown that the temperature response up to the mesopause is strongly influenced by changes in dynamics. During Northern Hemisphere summer, dynamical processes alone would lead to an almost global warming of up to 3 K in the uppermost mesosphere.


2015 ◽  
Vol 15 (10) ◽  
pp. 5537-5555 ◽  
Author(s):  
R. Eichinger ◽  
P. Jöckel ◽  
S. Brinkop ◽  
M. Werner ◽  
S. Lossow

Abstract. This modelling study aims at an improved understanding of the processes that determine the water vapour budget in the stratosphere by means of the investigation of water isotope ratios. An additional (and separate from the actual) hydrological cycle has been introduced into the chemistry–climate model EMAC, including the water isotopologues HDO and H218O and their physical fractionation processes. Additionally an explicit computation of the contribution of methane oxidation to H2O and HDO has been incorporated. The model expansions allow detailed analyses of water vapour and its isotope ratio with respect to deuterium throughout the stratosphere and in the transition region to the troposphere. In order to assure the correct representation of the water isotopologues in the model's hydrological cycle, the expanded system has been evaluated in several steps. The physical fractionation effects have been evaluated by comparison of the simulated isotopic composition of precipitation with measurements from a ground-based network (GNIP) and with the results from the isotopologue-enabled general circulation model ECHAM5-wiso. The model's representation of the chemical HDO precursor CH3D in the stratosphere has been confirmed by a comparison with chemical transport models (1-D, CHEM2D) and measurements from radiosonde flights. Finally, the simulated stratospheric HDO and the isotopic composition of water vapour have been evaluated, with respect to retrievals from three different satellite instruments (MIPAS, ACE-FTS, SMR). Discrepancies in stratospheric water vapour isotope ratios between two of the three satellite retrievals can now partly be explained.


2013 ◽  
Vol 9 (2) ◽  
pp. 871-886 ◽  
Author(s):  
M. Casado ◽  
P. Ortega ◽  
V. Masson-Delmotte ◽  
C. Risi ◽  
D. Swingedouw ◽  
...  

Abstract. In mid and high latitudes, the stable isotope ratio in precipitation is driven by changes in temperature, which control atmospheric distillation. This relationship forms the basis for many continental paleoclimatic reconstructions using direct (e.g. ice cores) or indirect (e.g. tree ring cellulose, speleothem calcite) archives of past precipitation. However, the archiving process is inherently biased by intermittency of precipitation. Here, we use two sets of atmospheric reanalyses (NCEP (National Centers for Environmental Prediction) and ERA-interim) to quantify this precipitation intermittency bias, by comparing seasonal (winter and summer) temperatures estimated with and without precipitation weighting. We show that this bias reaches up to 10 °C and has large interannual variability. We then assess the impact of precipitation intermittency on the strength and stability of temporal correlations between seasonal temperatures and the North Atlantic Oscillation (NAO). Precipitation weighting reduces the correlation between winter NAO and temperature in some areas (e.g. Québec, South-East USA, East Greenland, East Siberia, Mediterranean sector) but does not alter the main patterns of correlation. The correlations between NAO, δ18O in precipitation, temperature and precipitation weighted temperature are investigated using outputs of an atmospheric general circulation model enabled with stable isotopes and nudged using reanalyses (LMDZiso (Laboratoire de Météorologie Dynamique Zoom)). In winter, LMDZiso shows similar correlation values between the NAO and both the precipitation weighted temperature and δ18O in precipitation, thus suggesting limited impacts of moisture origin. Correlations of comparable magnitude are obtained for the available observational evidence (GNIP (Global Network of Isotopes in Precipitation) and Greenland ice core data). Our findings support the use of archives of past δ18O for NAO reconstructions.


2012 ◽  
Vol 8 (5) ◽  
pp. 1581-1598 ◽  
Author(s):  
V. Mariotti ◽  
L. Bopp ◽  
A. Tagliabue ◽  
M. Kageyama ◽  
D. Swingedouw

Abstract. Marine sediments records suggest large changes in marine productivity during glacial periods, with abrupt variations especially during the Heinrich events. Here, we study the response of marine biogeochemistry to such an event by using a biogeochemical model of the global ocean (PISCES) coupled to an ocean-atmosphere general circulation model (IPSL-CM4). We conduct a 400-yr-long transient simulation under glacial climate conditions with a freshwater forcing of 0.1 Sv applied to the North Atlantic to mimic a Heinrich event, alongside a glacial control simulation. To evaluate our numerical results, we have compiled the available marine productivity records covering Heinrich events. We find that simulated primary productivity and organic carbon export decrease globally (by 16% for both) during a Heinrich event, albeit with large regional variations. In our experiments, the North Atlantic displays a significant decrease, whereas the Southern Ocean shows an increase, in agreement with paleo-productivity reconstructions. In the Equatorial Pacific, the model simulates an increase in organic matter export production but decreased biogenic silica export. This antagonistic behaviour results from changes in relative uptake of carbon and silicic acid by diatoms. Reasonable agreement between model and data for the large-scale response to Heinrich events gives confidence in models used to predict future centennial changes in marine production. In addition, our model allows us to investigate the mechanisms behind the observed changes in the response to Heinrich events.


2009 ◽  
Vol 22 (22) ◽  
pp. 6089-6103 ◽  
Author(s):  
Richard T. Wetherald

Abstract This paper examines hydrological variability and its changes in two different versions of a coupled ocean–atmosphere general circulation model developed at the National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory and forced with estimates of future increases of greenhouse gas and aerosol concentrations. This paper is the second part, documenting potential changes in variability as greenhouse gases increase. The variance changes are examined using an ensemble of 8 transient integrations for an older model version and 10 transient integrations for a newer model. Monthly and annual data are used to compute the mean and variance changes. Emphasis is placed on computing and analyzing the variance changes for the middle of the twenty-first century and compared with those found in the respective control integrations. The hydrologic cycle intensifies because of the increase of greenhouse gases. In general, precipitation variance increases in most places. This is the case virtually everywhere the mean precipitation rate increases and many places where the precipitation decreases. The precipitation rate variance decreases in the subtropics, where the mean precipitation rate also decreases. The increased precipitation rate and variance, in middle to higher latitudes during late fall, winter, and early spring leads to increased runoff and its variance during that period. On the other hand, the variance changes of soil moisture are more complicated, because soil moisture has both a lower and upper bound that tends to reduce its fluctuations. This is particularly true in middle to higher latitudes during winter and spring, when the soil moisture is close to its saturation value at many locations. Therefore, changes in its variance are limited. Soil moisture variance change is positive during the summer, when the mean soil moisture decreases and is close to the middle of its allowable range. In middle to high northern latitudes, an increase in runoff and its variance during late winter and spring plus the decrease in soil moisture and its variance during summer lend support to the hypothesis stated in other publications that a warmer climate can cause an increasing frequency of both excessive discharge and drier events, depending on season and latitude.


Sign in / Sign up

Export Citation Format

Share Document