scholarly journals Improving Geostationary Satellite Rainfall Estimates Using Lightning Observations: Underlying Lightning–Rainfall–Cloud Relationships

2013 ◽  
Vol 52 (1) ◽  
pp. 213-229 ◽  
Author(s):  
Weixin Xu ◽  
Robert F. Adler ◽  
Nai-Yu Wang

AbstractThis study quantifies the relationships among lightning activity, convective rainfall, and associated cloud properties on both convective-system scale (or storm scale) and satellite-pixel scale (~5 km) on the basis of 13 yr of Tropical Rainfall Measuring Mission measurements of rainfall, lightning, and clouds. Results show that lightning frequency is a good proxy to separate storms of different intensity, identify convective cores, and screen out false convective-core signatures in areas of thick anvil debris. Significant correlations are found between storm-scale lightning parameters and convective rainfall for systems over the southern United States, the focus area of the study. Storm-scale convective rainfall or heavy-precipitation area has the best correlation (coefficient r = 0.75–0.85) with lightning-flash area. It also increases linearly with increasing lightning-flash rate, although correlations between convective/heavy rainfall and lightning-flash rate are somewhat weaker (r = 0.55–0.75). Statistics further show that active lightning and intense precipitation are not well collocated on the pixel scale (5 km); for example, only 50% of the lightning flashes are coincident with heavy-rain cores, and more than 20% are distributed in light-rain areas. Simple positive correlations between lightning-flash rate and precipitation intensity are weak on the pixel scale. Lightning frequency and rain intensity have positive probabilistic relationships, however: the probability of heavy precipitation, especially on a coarser pixel scale (~20 km), increases with increasing lightning-flash density. Therefore, discrete thresholds of lightning density could be applied in a rainfall estimation scheme to assign precipitation in specific rate categories.

2006 ◽  
Vol 19 (7) ◽  
pp. 1238-1260 ◽  
Author(s):  
Hiroki Ichikawa ◽  
Tetsuzo Yasunari

Abstract Five years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data were used to investigate the time and space characteristics of the diurnal cycle of rainfall over and around Borneo, an island in the Maritime Continent. The diurnal cycle shows a systematic modulation that is associated with intraseasonal variability in the large-scale circulation pattern, with regimes associated with low-level easterlies or westerlies over the island. The lower-tropospheric westerly (easterly) components correspond to periods of active (inactive) convection over the island that are associated with the passage of intraseasonal atmospheric disturbances related to the Madden–Julian oscillation. A striking feature is that rainfall activity propagates to the leeward side of the island between midnight and morning. The inferred phase speed of the propagation is about 3 m s−1 in the easterly regime and 7 m s−1 in the westerly regime. Propagation occurs over the entire island, causing a leeward enhancement of rainfall. The vertical structure of the developed convection/rainfall system differs remarkably between the two regimes. In the easterly regime, stratiform rains are widespread over the island at midnight, whereas in the westerly regime, local convective rainfall dominates. Over offshore regions, convective rainfall initially dominates then gradually decreases in both regimes, while the storms develop into deeper convective systems in the easterly regime. Aside from leeward rainfall propagation, shallow storms develop over the South China Sea region during the westerly regime, resulting in heavy precipitation from midnight through morning.


1982 ◽  
Vol 63 (10) ◽  
pp. 1142-1150 ◽  
Author(s):  
John F. Weaver ◽  
John M. Brown

On 15 October 1980, a weather system that had been to the west of Colorado was forecast to move into the state, and to bring with it light to moderate snow in the Rockies, and generally light rain and thundershower activity over the plains to the east. In most regions this forecast was adequate. However, substantially heavier activity (including a small tornado, large hail, heavy rain, and snow) also occurred in some areas. In this paper we show how all relevant real-time data, when properly merged, could have enabled formulation of a useful short-term forecast. In addition we point out how mesonet surface data gathered after the fact could have helped narrow down the forecast area of severe weather and heavy precipitation.


2013 ◽  
Vol 52 (12) ◽  
pp. 2809-2827 ◽  
Author(s):  
Joseph P. Zagrodnik ◽  
Haiyan Jiang

AbstractRainfall estimates from versions 6 (V6) and 7 (V7) of the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) 2A25 and Microwave Imager (TMI) 2A12 algorithms are compared relative to the Next Generation Weather Radar (NEXRAD) Multisensor Precipitation Estimate stage-IV hourly rainfall product. The dataset consists of 252 TRMM overpasses of tropical cyclones from 2002 to 2010 within a 230-km range of southeastern U.S. Weather Surveillance Radar-1988 Doppler (WSR-88D) sites. All rainfall estimates are averaged to a uniform 1/7° square grid. The grid boxes are also divided by their TMI surface designation (land, ocean, or coast). A detailed statistical analysis is undertaken to determine how changes to the TRMM rainfall algorithms in the latest version (V7) are influencing the rainfall retrievals relative to ground reference data. Version 7 of the PR 2A25 is the best-performing algorithm over all three surface types. Over ocean, TMI 2A12 V7 is improved relative to V6 at high rain rates. At low rain rates, the new ocean TMI V7 probability-of-rain parameter creates ambiguity in differentiating light rain (≤0.5 mm h−1) and nonraining areas. Over land, TMI V7 underestimates stage IV more than V6 does at a wide range of rain rates, resulting in an increased negative bias. Both versions of the TMI coastal algorithm are also negatively biased at both moderate and heavy rain rates. Some of the TMI biases can be explained by uncertain relationships between rain rate and 85-GHz ice scattering.


2005 ◽  
Vol 133 (3) ◽  
pp. 543-566 ◽  
Author(s):  
Daniel J. Cecil ◽  
Steven J. Goodman ◽  
Dennis J. Boccippio ◽  
Edward J. Zipser ◽  
Stephen W. Nesbitt

Abstract During its first three years, the Tropical Rainfall Measuring Mission (TRMM) satellite observed nearly six million precipitation features. The population of precipitation features is sorted by lightning flash rate, minimum brightness temperature, maximum radar reflectivity, areal extent, and volumetric rainfall. For each of these characteristics, essentially describing the convective intensity or the size of the features, the population is broken into categories consisting of the top 0.001%, top 0.01%, top 0.1%, top 1%, top 2.4%, and remaining 97.6%. The set of “weakest/smallest” features composes 97.6% of the population because that fraction does not have detected lightning, with a minimum detectable flash rate of 0.7 flashes (fl) min−1. The greatest observed flash rate is 1351 fl min−1; the lowest brightness temperatures are 42 K (85 GHz) and 69 K (37 GHz). The largest precipitation feature covers 335 000 km2, and the greatest rainfall from an individual precipitation feature exceeds 2 × 1012 kg h−1 of water. There is considerable overlap between the greatest storms according to different measures of convective intensity. The largest storms are mostly independent of the most intense storms. The set of storms producing the most rainfall is a convolution of the largest and the most intense storms. This analysis is a composite of the global Tropics and subtropics. Significant variability is known to exist between locations, seasons, and meteorological regimes. Such variability will be examined in Part II. In Part I, only a crude land–ocean separation is made. The known differences in bulk lightning flash rates over land and ocean result from at least two differences in the precipitation feature population: the frequency of occurrence of intense storms and the magnitude of those intense storms that do occur. Even when restricted to storms with the same brightness temperature, same size, or same radar reflectivity aloft, the storms over water are considerably less likely to produce lightning than are comparable storms over land.


2022 ◽  
Author(s):  
Unashish Mondal ◽  
Subrat Kumar Panda ◽  
Someshwar Das ◽  
Devesh Sharma

Abstract Lightning is an electrical discharge - a'spark' or 'flash' as charged regions in the atmosphere instantly balance themselves through this discharge. It is a beautiful and deadly naturally occurring phenomenon. In June 2020, more than a hundred people died in the state Bihar of India only in three days’ span due to lightning events. In this work, Lightning Imaging Sensor (LIS) information from the Tropical Rainfall Measuring Mission (TRMM) satellite with a very high spatial resolution of 0.1 X 0.1 degree has been utilized to create the climatology of India for 16 years from 1998 to 2013. Diurnal, monthly, and seasonal variations in the occurrence of lightning flash rate density have also been analyzed. TRMM satellite low-resolution monthly time series (LRMTS) with 2.5-degree resolution datasets have been used for lightning trend analysis. The diurnal lightning event mainly occurs in the afternoon/evening (1400-1900 Hrs) time duration around 0.001 flashes/km2/hr. The highest lightning occurred in May (0.04 flashes/km2/day) and the least in December (0.005 flashes/km2/day). The distribution of lightning flash counts by season over India landmass is mainly in pre-monsoon (MAM) ranges from 0.248 – 0.491 flashes/km2/day, and monsoon (JJA) ranges from 0.284 – 0.451 flashes/km2/day and decreases afterward. Spatially, the distribution of lightning flashes mainly at North-Eastern region along with Bangladesh, Bihar, Jharkhand, Orissa, and Jammu & Kashmir region. The CAPE and K Index have positively correlated with the flash rate density seasonally but CAPE is more significantly correlated. This study also focused on finding of lightning hotspots region of India district wise and Rajouri district in Jammu and Kashmir got the highest lightning with 121 flashes/km2/yr.


2017 ◽  
Vol 98 (7) ◽  
pp. 1453-1470 ◽  
Author(s):  
Themistoklis Chronis ◽  
William J. Koshak

Abstract This study provides, for the first time, an analysis of the climatological diurnal variations in the lightning flash radiance data product ε from the Tropical Rainfall Measuring Mission Lightning Imaging Sensor (TRMM/LIS). The ε values over 13 years (2002–14), and over a global scale (∼38°S–38°N), reveal novel and remarkably consistent regional and seasonal patterns as a function of the local solar time (LST). In particular, the diurnal variation of ε (over both continental and oceanic regions) is characterized by a monotonic increase from late afternoon (∼2000 LST), attaining a maximum around 0900 LST, followed by a decreasing trend. The continental (oceanic) ε values reach a broader minimum spanning from ∼1500 to 1900 LST (∼1800 to 2000). The relative diurnal amplitude variation in continental ε is about 45%, compared to about 15% for oceanic ε. This study confirms that the results are not affected by diurnal biases associated with instrument detection or other statistical artifacts. Notable agreement is shown between the diurnal variations of ε and the global-scale (∼38°S–38°N) mesoscale convective system areal extent. Comparisons with recently published diurnal variations of cloud-to-ground lightning peak current over the United States also exhibit a marked similarity. Given the novelty of these findings, a few tentative hypotheses about the underlying physical mechanism(s) are discussed.


2020 ◽  
Vol 77 (5) ◽  
pp. 1583-1612 ◽  
Author(s):  
Nana Liu ◽  
Chuntao Liu ◽  
Baohua Chen ◽  
Edward Zipser

Abstract A 16-yr Tropical Rainfall Measuring Mission (TRMM) convective feature (CF) dataset and ERA-Interim data are used to understand the favorable thermodynamic and kinematic environments for high-flash-rate thunderstorms globally as well as regionally. We find that intense thunderstorms, defined as having more than 50 lightning flashes within a CF during the ~90-s TRMM overpassing time share a few common thermodynamic features over various regions. These include large convective available potential energy (>1000 J kg−1), small to moderate convection inhibition (CIN), and abundant moisture convergence associated with low-level warm advection. However, each region has its own specific features. Generally, thunderstorms with high lightning flash rates have greater CAPE and wind shear than those with low flash rates, but the differences are much smaller in tropical regions than in subtropical regions. The magnitude of the low- to midtropospheric wind shear is greater over the subtropical regions, including the south-central United States, Argentina, and southwest of the Himalayas, than tropical regions, including central Africa, Colombia, and northwest Mexico, with the exception of Sahel region. Relatively, favorable environments of high-flash-rate thunderstorms in the tropical regions are characterized by higher CAPE, lower CIN, and weaker wind shear compared to the high-flash-rate thunderstorms in the subtropical regions, which have a moderate CAPE and CIN, and stronger low to midtropospheric wind shear.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1006 ◽  
Author(s):  
Jiayong Shi ◽  
Fei Yuan ◽  
Chunxiang Shi ◽  
Chongxu Zhao ◽  
Limin Zhang ◽  
...  

As the successor of Tropical Rainfall Measuring Mission, Global Precipitation Measurement (GPM) has released a range of satellite-based precipitation products (SPPs). This study conducts a comparative analysis on the quality of the integrated multisatellite retrievals for GPM (IMERG) and global satellite mapping of precipitation (GSMaP) SPPs in the Yellow River source region (YRSR). This research includes the eight latest GPM-era SPPs, namely, IMERG “Early,” “Late,” and “Final” run SPPs (IMERG-E, IMERG-L, and IMERG-F) and GSMaP gauge-adjusted product (GSMaP-Gauge), microwave-infrared reanalyzed product (GSMaP-MVK), near-real-time product (GSMaP-NRT), near-real-time product with gauge-based adjustment (GSMaP-Gauge-NRT), and real-time product (GSMaP-NOW). In addition, the IMERG SPPs were compared with GSMaP SPPs at multiple spatiotemporal scales. Results indicate that among the three IMERG SPPs, IMERG-F exhibited the lowest systematic errors and the best quality, followed by IMERG-E and IMERG-L. IMERG-E and IMERG-L underestimated the occurrences of light-rain events but overestimated the moderate and heavy rain events. For GSMaP SPPs, GSMaP-Gauge presented the best performance in terms of various statistical metrics, followed by GSMaP-Gauge-NRT. GSMaP-MVK and GSMaP-NRT remarkably overestimated total precipitation, and GSMaP-NOW showed an evident underestimation. By comparing the performances of IMERG and GSMaP SPPs, GSMaP-Gauge-NRT provided the best precipitation estimates among all real-time and near-real-time SPPs. For post-real-time SPPs, GSMaP-Gauge presented the highest capability at the daily scale, and IMERG-F slightly outperformed the other SPPs at the monthly scale. This study is one of the earliest studies focusing on the quality of the latest IMERG and GSMaP SPPs. The findings of this study provide SPP developers with valuable information on the quality of the latest GPM-era SPPs in YRSR and help SPP researchers to refine the precipitation retrieving algorithms to improve the applicability of SPPs.


2015 ◽  
Vol 28 (16) ◽  
pp. 6536-6547 ◽  
Author(s):  
Daniel J. Cecil ◽  
Dennis E. Buechler ◽  
Richard J. Blakeslee

Abstract The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite has previously been used to build climatologies of mean lightning flash rate across the global tropics and subtropics. This new work explores climatologies of thunderstorm occurrence as seen by LIS and the conditional mean flash rates when thunderstorms do occur. The region where thunderstorms are seen most often by LIS extends slightly farther east in central Africa than the corresponding region with the highest total mean annual flash rates. Presumably this reflects a difference between more frequent thunderstorm initiation in the east and upscale growth as storms move westward. There are some differences between locations with the greatest total lightning flash counts and those where thunderstorms occur most often. The greatest conditional mean flash rates—considering only those TRMM orbits that do have lightning in a given grid box—are found in subtropical regions. The highest values are in Argentina, with the central United States, Pakistan, eastern China, and the east coast of Australia also having particularly high values.


2021 ◽  
Vol 13 (12) ◽  
pp. 2303
Author(s):  
Li Luo ◽  
Jia Guo ◽  
Haonan Chen ◽  
Meilin Yang ◽  
Mingxuan Chen ◽  
...  

The seasonal variations of raindrop size distribution (DSD) and rainfall are investigated using three-year (2016–2018) observations from a two-dimensional video disdrometer (2DVD) located at a suburban station (40.13°N, 116.62°E, ~30 m AMSL) in Beijing, China. The annual distribution of rainfall presents a unimodal distribution with a peak in summer with total rainfall of 966.6 mm, followed by fall. Rain rate (R), mass-weighted mean diameter (Dm), and raindrop concentration (Nt) are stratified into six regimes to study their seasonal variation and relative rainfall contribution to the total seasonal rainfall. Heavy drizzle/light rain (R2: 0.2~2.5 mm h−1) has the maximum occurrence frequency throughout the year, while the total rainfall in summer is primarily from heavy rain (R4: 10~50 mm h−1). The rainfall for all seasons is contributed primarily from small raindrops (Dm2: 1.0~2.0 mm). The distribution of occurrence frequency of Nt and the relative rainfall contribution exhibit similar behavior during four seasons with Nt of 10~1000 m−3 registering the maximum occurrence and rainfall contributions. Rainfall in Beijing is dominated by stratiform rain (SR) throughout the year. There is no convective rainfall (CR) in winter, i.e., it occurs most often during summer. DSD of SR has minor seasonal differences, but varies significantly in CR. The mean values of log10Nw (Nw: mm−1m−3, the generalized intercept parameter) and Dm of CR indicate that the CR during spring and fall in Beijing is neither continental nor maritime, at the same time, the CR in summer is close to the maritime-like cluster. The radar reflectivity (Z) and rain rate (?) relationship (Z = ?R?) showed seasonal differences, but were close to the standard NEXRAD Z-R relationship in summer. The shape of raindrops observed from 2DVD was more spherical than the shape obtained from previous experiments, and the effect of different axis ratio relations on polarimetric radar measurements was investigated through T-matrix-based scattering simulations.


Sign in / Sign up

Export Citation Format

Share Document