Time–Space Characteristics of Diurnal Rainfall over Borneo and Surrounding Oceans as Observed by TRMM-PR

2006 ◽  
Vol 19 (7) ◽  
pp. 1238-1260 ◽  
Author(s):  
Hiroki Ichikawa ◽  
Tetsuzo Yasunari

Abstract Five years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) data were used to investigate the time and space characteristics of the diurnal cycle of rainfall over and around Borneo, an island in the Maritime Continent. The diurnal cycle shows a systematic modulation that is associated with intraseasonal variability in the large-scale circulation pattern, with regimes associated with low-level easterlies or westerlies over the island. The lower-tropospheric westerly (easterly) components correspond to periods of active (inactive) convection over the island that are associated with the passage of intraseasonal atmospheric disturbances related to the Madden–Julian oscillation. A striking feature is that rainfall activity propagates to the leeward side of the island between midnight and morning. The inferred phase speed of the propagation is about 3 m s−1 in the easterly regime and 7 m s−1 in the westerly regime. Propagation occurs over the entire island, causing a leeward enhancement of rainfall. The vertical structure of the developed convection/rainfall system differs remarkably between the two regimes. In the easterly regime, stratiform rains are widespread over the island at midnight, whereas in the westerly regime, local convective rainfall dominates. Over offshore regions, convective rainfall initially dominates then gradually decreases in both regimes, while the storms develop into deeper convective systems in the easterly regime. Aside from leeward rainfall propagation, shallow storms develop over the South China Sea region during the westerly regime, resulting in heavy precipitation from midnight through morning.

2008 ◽  
Vol 21 (12) ◽  
pp. 2852-2868 ◽  
Author(s):  
Hiroki Ichikawa ◽  
Tetsuzo Yasunari

Abstract High-resolution Tropical Rainfall Measuring Mission (TRMM) rainfall data for six wet seasons (December–March) were used to investigate the time and space structure of the diurnal cycle of rainfall over and around New Guinea, a major island of the Maritime Continent. The diurnal cycle shows a systematic modulation associated with intraseasonal variability in the large-scale circulation pattern, with regimes associated with low-level easterlies or westerlies over the island. Lower-tropospheric easterly (westerly) wind components correspond to periods of inactive (active) convection over the islands that are associated with the passage of intraseasonal atmospheric disturbances such as the Madden–Julian oscillation (MJO). A striking feature is the diurnal rainfall that develops over the central mountain ranges in the evening and propagates toward the southwest (northeast) of the island with an inferred phase speed of about 2–3 m s−1 under low-level easterly (westerly) flow. In the case of the easterly regime, diurnal rainfall is strongly concentrated over the southwestern part of the island, inhibited from spreading offshore southwest of New Guinea. Under the westerly regime, in contrast, the rainfall area spread far and wide along the low-level westerlies from the island toward the Pacific Ocean. Significant offshore rainfall propagation extending from the island appears during the night over the north-northeastern coast and moves with a phase speed of about 7–8 m s−1, reaching the open ocean the following day. Possible processes for controlling the variability in diurnal rainfall through the interaction between large-scale circulation and previously denoted complex local circulation over the island are discussed.


2013 ◽  
Vol 52 (1) ◽  
pp. 213-229 ◽  
Author(s):  
Weixin Xu ◽  
Robert F. Adler ◽  
Nai-Yu Wang

AbstractThis study quantifies the relationships among lightning activity, convective rainfall, and associated cloud properties on both convective-system scale (or storm scale) and satellite-pixel scale (~5 km) on the basis of 13 yr of Tropical Rainfall Measuring Mission measurements of rainfall, lightning, and clouds. Results show that lightning frequency is a good proxy to separate storms of different intensity, identify convective cores, and screen out false convective-core signatures in areas of thick anvil debris. Significant correlations are found between storm-scale lightning parameters and convective rainfall for systems over the southern United States, the focus area of the study. Storm-scale convective rainfall or heavy-precipitation area has the best correlation (coefficient r = 0.75–0.85) with lightning-flash area. It also increases linearly with increasing lightning-flash rate, although correlations between convective/heavy rainfall and lightning-flash rate are somewhat weaker (r = 0.55–0.75). Statistics further show that active lightning and intense precipitation are not well collocated on the pixel scale (5 km); for example, only 50% of the lightning flashes are coincident with heavy-rain cores, and more than 20% are distributed in light-rain areas. Simple positive correlations between lightning-flash rate and precipitation intensity are weak on the pixel scale. Lightning frequency and rain intensity have positive probabilistic relationships, however: the probability of heavy precipitation, especially on a coarser pixel scale (~20 km), increases with increasing lightning-flash density. Therefore, discrete thresholds of lightning density could be applied in a rainfall estimation scheme to assign precipitation in specific rate categories.


2005 ◽  
Vol 62 (8) ◽  
pp. 2770-2789 ◽  
Author(s):  
Sandrine Bony ◽  
Kerry A. Emanuel

Abstract Recent observations of the tropical atmosphere reveal large variations of water vapor and clouds at intraseasonal time scales. This study investigates the role of these variations in the large-scale organization of the tropical atmosphere, and in intraseasonal variability in particular. For this purpose, the influence of feedbacks between moisture (water vapor, clouds), radiation, and convection that affect the growth rate and the phase speed of unstable modes of the tropical atmosphere is investigated. Results from a simple linear model suggest that interactions between moisture and tropospheric radiative cooling, referred to as moist-radiative feedbacks, play a significant role in tropical intraseasonal variability. Their primary effect is to reduce the phase speed of large-scale tropical disturbances: by cooling the atmosphere less efficiently during the rising phase of the oscillations (when the atmosphere is moister) than during episodes of large-scale subsidence (when the atmosphere is drier), the atmospheric radiative heating reduces the effective stratification felt by propagating waves and slows down their propagation. In the presence of significant moist-radiative feedbacks, planetary disturbances are characterized by an approximately constant frequency. In addition, moist-radiative feedbacks excite small-scale disturbances advected by the mean flow. The interactions between moisture and convection exert a selective damping effect upon small-scale disturbances, thereby favoring large-scale propagating waves at the expense of small-scale advective disturbances. They also weaken the ability of radiative processes to slow down the propagation of planetary-scale disturbances. This study suggests that a deficient simulation of cloud radiative interactions or of convection-moisture interactions may explain some of the difficulties experienced by general circulation models in simulating tropical intraseasonal oscillations.


2019 ◽  
Vol 32 (24) ◽  
pp. 8687-8700
Author(s):  
David Maximiliano Zermeño-Díaz

Abstract Following the idea that large-scale wind perturbations cause repeatable rainfall patterns over small tropical islands, the spatial pattern of the midsummer drought (MSD) is investigated as a repeatable rainfall pattern over the Intra-Americas Seas (IAS). For that, statistical techniques, including linear regressions, canonical correlation analysis, and variance budgets, were applied to the Tropical Rainfall Measuring Mission and ERA-Interim datasets to assess 1) the MSD pattern repeatability and 2) its explained variance in different time scales. As shown by the results, the MSD pattern is not a unique feature of the boreal summer intraseasonal variability in the IAS: it is more robust during summer but it exists in all rainy seasons on daily, intraseasonal, and interannual time scales. On diurnal time scales, the MSD pattern explains a negligible part of the total variance during summer (<2%), but on interannual scales it explains up to 20% and it captures the spatial features of “El Niño” rainfall anomalies. On all time scales, the MSD pattern is accompanied by repeatable wind and pressure patterns: anomalous lower-tropospheric (925 hPa) easterlies over a domain-wide meridional northward pressure gradient. These results provide evidence for the hypothesis that the MSD pattern manifests an underlying geographically determined, mechanistic pattern. Also, they suggest that the repeatable MSD-shaped rainfall and wind patterns could be extrapolated in time to better understand the climatic conditions behind droughts and pluvials, and to diagnose the causes behind rainfall trends.


2010 ◽  
Vol 138 (4) ◽  
pp. 1368-1382 ◽  
Author(s):  
Jeffrey S. Gall ◽  
William M. Frank ◽  
Matthew C. Wheeler

Abstract This two-part series of papers examines the role of equatorial Rossby (ER) waves in tropical cyclone (TC) genesis. To do this, a unique initialization procedure is utilized to insert n = 1 ER waves into a numerical model that is able to faithfully produce TCs. In this first paper, experiments are carried out under the idealized condition of an initially quiescent background environment. Experiments are performed with varying initial wave amplitudes and with and without diabatic effects. This is done to both investigate how the properties of the simulated ER waves compare to the properties of observed ER waves and explore the role of the initial perturbation strength of the ER wave on genesis. In the dry, frictionless ER wave simulation the phase speed is slightly slower than the phase speed predicted from linear theory. Large-scale ascent develops in the region of low-level poleward flow, which is in good agreement with the theoretical structure of an n = 1 ER wave. The structures and phase speeds of the simulated full-physics ER waves are in good agreement with recent observational studies of ER waves that utilize wavenumber–frequency filtering techniques. Convection occurs primarily in the eastern half of the cyclonic gyre, as do the most favorable conditions for TC genesis. This region features sufficient midlevel moisture, anomalously strong low-level cyclonic vorticity, enhanced convection, and minimal vertical shear. Tropical cyclogenesis occurs only in the largest initial-amplitude ER wave simulation. The formation of the initial tropical disturbance that ultimately develops into a tropical cyclone is shown to be sensitive to the nonlinear horizontal momentum advection terms. When the largest initial-amplitude simulation is rerun with the nonlinear horizontal momentum advection terms turned off, tropical cyclogenesis does not occur, but the convectively coupled ER wave retains the properties of the ER wave observed in the smaller initial-amplitude simulations. It is shown that this isolated wave-only genesis process only occurs for strong ER waves in which the nonlinear advection is large. Part II will look at the more realistic case of ER wave–related genesis in which a sufficiently intense ER wave interacts with favorable large-scale flow features.


2017 ◽  
Vol 30 (24) ◽  
pp. 9827-9845 ◽  
Author(s):  
Xin Zhou ◽  
Marat F. Khairoutdinov

Subdaily temperature and precipitation extremes in response to warmer SSTs are investigated on a global scale using the superparameterized (SP) Community Atmosphere Model (CAM), in which a cloud-resolving model is embedded in each CAM grid column to simulate convection explicitly. Two 10-yr simulations have been performed using present climatological sea surface temperature (SST) and perturbed SST climatology derived from the representative concentration pathway 8.5 (RCP8.5) scenario. Compared with the conventional CAM, SP-CAM simulates colder temperatures and more realistic intensity distribution of precipitation, especially for heavy precipitation. The temperature and precipitation extremes have been defined by the 99th percentile of the 3-hourly data. For temperature, the changes in the warm and cold extremes are generally consistent between CAM and SP-CAM, with larger changes in warm extremes at low latitudes and larger changes in cold extremes at mid-to-high latitudes. For precipitation, CAM predicts a uniform increase of frequency of precipitation extremes regardless of the rain rate, while SP-CAM predicts a monotonic increase of frequency with increasing rain rate and larger change of intensity for heavier precipitation. The changes in 3-hourly and daily temperature extremes are found to be similar; however, the 3-hourly precipitation extremes have a significantly larger change than daily extremes. The Clausius–Clapeyron scaling is found to be a relatively good predictor of zonally averaged changes in precipitation extremes over midlatitudes but not as good over the tropics and subtropics. The changes in precipitable water and large-scale vertical velocity are equally important to explain the changes in precipitation extremes.


2021 ◽  
Author(s):  
Anasuya Gangopadhyay ◽  
Ashwin K Seshadri ◽  
Ralf Toumi

<p>Smoothing of wind generation variability is important for grid integration of large-scale wind power plants. One approach to achieving smoothing is aggregating wind generation from plants that have uncorrelated or negatively correlated wind speed. It is well known that the wind speed correlation on average decays with increasing distance between plants, but the correlations may not be explained by distance alone. In India, the wind speed diurnal cycle plays a significant role in explaining the hourly correlation of wind speed between location pairs. This creates an opportunity of “diurnal smoothing”. At a given separation distance the hourly wind speeds correlation is reduced for those pairs that have a difference of +/- 12 hours in local time of wind maximum. This effect is more prominent for location pairs separated by 200 km or more and where the amplitude of the diurnal cycle is more than about  0.5 m/s. “Diurnal smoothing” also has a positive impact on the aggregate wind predictability and forecast error. “Diurnal smoothing” could also be important for other regions with diurnal wind speed cycles.</p>


2021 ◽  
Author(s):  
Nikos Bakas

<p>Forced-dissipative beta-plane turbulence in a single-layer shallow-water fluid has been widely considered as a simplified model of planetary turbulence as it exhibits turbulence self-organization into large-scale structures such as robust zonal jets and strong vortices. In this study we perform a series of numerical simulations to analyze the characteristics of the emerging structures as a function of the planetary vorticity gradient and the deformation radius. We report four regimes that appear as the energy input rate ε of the random stirring that supports turbulence in the flow increases. A homogeneous turbulent regime for low values of ε, a regime in which large scale Rossby waves form abruptly when ε passes a critical value, a regime in which robust zonal jets coexist with weaker Rossby waves when ε passes a second critical value and a regime of strong materially coherent propagating vortices for large values of ε. The wave regime which is not predicted by standard cascade theories of turbulence anisotropization and the vortex regime are studied thoroughly. Wavenumber-frequency spectra analysis shows that the Rossby waves in the second regime remain phase coherent over long times. The coherent vortices are identified using the Lagrangian Averaged Deviation (LAVD) method. The statistics of the vortices (lifetime, radius, strength and speed) are reported as a function of the large scale parameters. We find that the strong vortices propagate zonally with a phase speed that is equal or larger than the long Rossby wave speed and advect the background turbulence leading to a non-dispersive line in the wavenumber-frequency spectra.</p>


2021 ◽  
pp. 1-39
Author(s):  
Cassandra D.W. Rogers ◽  
Kai Kornhuber ◽  
Sarah E. Perkins-Kirkpatrick ◽  
Paul C. Loikith ◽  
Deepti Singh

AbstractSimultaneous heatwaves affecting multiple regions (referred to as concurrent heatwaves), pose compounding threats to various natural and societal systems, including global food chains, emergency response systems, and reinsurance industries. While anthropogenic climate change is increasing heatwave risks across most regions, the interactions between warming and circulation changes that yield concurrent heatwaves remain understudied. Here, we quantify historical (1979-2019) trends in concurrent heatwaves during the warm-season (May-September, MJJAS) across the Northern Hemisphere mid- to high-latitudes. We find a significant increase of ~46% in the mean spatial extent of concurrent heatwaves, ~17% increase in their maximum intensity, and ~6-fold increase in their frequency. Using Self-Organising Maps, we identify large-scale circulation patterns (300 hPa) associated with specific concurrent heatwave configurations across Northern Hemisphere regions. We show that observed changes in the frequency of specific circulation patterns preferentially increase the risk of concurrent heatwaves across particular regions. Patterns linking concurrent heatwaves across eastern North America, eastern and northern Europe, parts of Asia, and the Barents and Kara Seas, show the largest increases in frequency (~5.9 additional days per decade). We also quantify the relative contributions of circulation pattern changes and warming to overall observed concurrent heatwave day frequency trends. While warming has a predominant and positive influence on increasing concurrent heatwaves, circulation pattern changes have a varying influence and account for up to 0.8 additional concurrent heatwave days per decade. Identifying regions with an elevated risk of concurrent heatwaves and understanding their drivers is indispensable for evaluating projected climate risks on interconnected societal systems and fostering regional preparedness in a changing climate.


2018 ◽  
Vol 75 (10) ◽  
pp. 3313-3330 ◽  
Author(s):  
Hauke Schulz ◽  
Bjorn Stevens

Measurements from the Barbados Cloud Observatory are analyzed to identify the processes influencing the distribution of moist static energy and the large-scale organization of tropical convection. Five years of water vapor and cloud profiles from a Raman lidar and cloud radar are composed to construct the structure of the observed atmosphere in moisture space. The large-scale structure of the atmosphere is similar to that now familiar from idealized studies of convective self-aggregation, with shallow clouds prevailing over a moist marine layer in regions of low-rank humidity, and deep convection in a nearly saturated atmosphere in regions of high-rank humidity. With supplementary reanalysis datasets the overall circulation pattern is reconstructed in moisture space, and shows evidence of a substantial lower-tropospheric component to the circulation. This shallow component of the circulation helps support the differentiation between the moist and dry columns, similar to what is found in simulations of convective self-aggregation. Radiative calculations show that clear-sky radiative differences can explain a substantial part of this circulation, with further contributions expected from cloud radiative effects. The shallow component appears to be important for maintaining the low gross moist stability of the convecting column. A positive feedback between a shallow circulation driven by differential radiative cooling and the low-level moisture gradients that help support it is hypothesized to play an important role in conditioning the atmosphere for deep convection. The analysis suggests that the radiatively driven shallow circulations identified by modeling studies as contributing to the self-aggregation of convection in radiative–convective equilibrium similarly play a role in shaping the intertropical convergence zone and, hence, the large-scale structure of the tropical atmosphere.


Sign in / Sign up

Export Citation Format

Share Document