scholarly journals The Sensitivity of WRF Downscaled Precipitation in Puerto Rico to Cumulus Parameterization and Interior Grid Nudging

2016 ◽  
Vol 55 (10) ◽  
pp. 2263-2281 ◽  
Author(s):  
A. Wootten ◽  
J. H. Bowden ◽  
R. Boyles ◽  
A. Terando

AbstractThe sensitivity of the precipitation over Puerto Rico that is simulated by the Weather Research and Forecasting (WRF) Model is evaluated using multiple combinations of cumulus parameterization (CP) schemes and interior grid nudging. The NCEP–DOE AMIP-II reanalysis (R-2) is downscaled to 2-km horizontal grid spacing both with convective-permitting simulations (CP active only in the middle and outer domains) and with CP schemes active in all domains. The results generally show lower simulated precipitation amounts than are observed, regardless of WRF configuration, but activating the CP schemes in the inner domain improves the annual cycle, intensity, and placement of rainfall relative to the convective-permitting simulations. Furthermore, the use of interior-grid-nudging techniques in the outer domains improves the placement and intensity of rainfall in the inner domain. Incorporating a CP scheme at convective-permitting scales (<4 km) and grid nudging at non-convective-permitting scales (>4 km) improves the island average correlation of precipitation by 0.05–0.2 and reduces the island average RMSE by up to 40 mm on average over relying on the explicit microphysics at convective-permitting scales with grid nudging. Projected changes in summer precipitation between 2040–42 and 1985–87 using WRF to downscale CCSM4 range from a 2.6-mm average increase to an 81.9-mm average decrease, depending on the choice of CP scheme. The differences are only associated with differences between WRF configurations, which indicates the importance of CP scheme for projected precipitation change as well as historical accuracy.

2014 ◽  
Vol 29 (5) ◽  
pp. 1143-1154 ◽  
Author(s):  
Kyo-Sun Sunny Lim ◽  
Song-You Hong ◽  
Jin-Ho Yoon ◽  
Jongil Han

Abstract The most recent version of the simplified Arakawa–Schubert (SAS) cumulus scheme in the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) (GFS SAS) is implemented in the Weather Research and Forecasting (WRF) Model with a modification of the triggering condition and the convective mass flux in order to make it dependent on the model’s horizontal grid spacing. The East Asian summer monsoon season of 2006 is selected in order to evaluate the performance of the modified GFS SAS scheme. In comparison to the original GFS SAS scheme, the modified GFS SAS scheme shows overall better agreement with the observations in terms of the simulated monsoon rainfall. The simulated precipitation from the original GFS SAS scheme is insensitive to the model’s horizontal grid spacing, which is counterintuitive because the portion of the resolved clouds in a grid box should increase as the model grid spacing decreases. This behavior of the original GFS SAS scheme is alleviated by the modified GFS SAS scheme. In addition, three different cumulus schemes (Grell and Freitas, Kain and Fritsch, and Betts–Miller–Janjić) are chosen to investigate the role of a horizontal resolution on the simulated monsoon rainfall. Although the forecast skill of the surface rainfall does not always improve as the spatial resolution increases, the improvement of the probability density function of the rain rate with the smaller grid spacing is robust regardless of the cumulus parameterization scheme.


2016 ◽  
Vol 144 (10) ◽  
pp. 3579-3590 ◽  
Author(s):  
Jihyeon Jang ◽  
Song-You Hong

This study examines the characteristics of a nonhydrostatic dynamical core compared to a corresponding hydrostatic dynamical core in the Regional Model Program (RMP) of the Global/Regional Integrated Model system (GRIMs), a spectral model for regional forecasts, focusing on simulated precipitation over Korea. This kind of comparison is also executed in the Weather Research and Forecasting (WRF) finite-difference model with the same physics package used in the RMP. Overall, it is found that the nonhydrostatic dynamical core experiment accurately reproduces the heavy rainfall near Seoul, South Korea, on a 3-km grid, relative to the results from the hydrostatic dynamical core in both models. However, the characteristics of nonhydrostatic effects on the simulated precipitation differ between the RMP and WRF Model. The RMP with the nonhydrostatic dynamical core improves the local maximum, which is exaggerated in the hydrostatic simulation. The hydrostatic simulation of the WRF Model displaces the major precipitation area toward the mountainous region along the east coast of the peninsula, which is shifted into the observed area in the nonhydrostatic simulation. In the simulation of a summer monsoonal rainfall, these nonhydrostatic effects are negligible in the RMP, but the simulated monsoonal rainfall is still influenced by the dynamical core in the WRF Model even at a 27-km grid spacing. One of the reasons for the smaller dynamical core effect in the RMP seems to be the relatively strong horizontal diffusion, resulting in a smaller grid size of the hydrostatic limit.


2011 ◽  
Vol 50 (12) ◽  
pp. 2429-2444 ◽  
Author(s):  
Jeremy A. Gibbs ◽  
Evgeni Fedorovich ◽  
Alexander M. J. van Eijk

AbstractWeather Research and Forecasting (WRF) model predictions using different boundary layer schemes and horizontal grid spacings were compared with observational and numerical large-eddy simulation data for conditions corresponding to a dry atmospheric convective boundary layer (CBL) over the southern Great Plains (SGP). The first studied case exhibited a dryline passage during the simulation window, and the second studied case was used to examine the CBL in a post-cold-frontal environment. The model runs were conducted with three boundary layer parameterization schemes (Yonsei University, Mellor–Yamada–Janjić, and asymmetrical convective) commonly employed within the WRF model environment to represent effects of small-scale turbulent transport. A study domain was centered over the Atmospheric Radiation Measurement Program SGP site in Lamont, Oklahoma. Results show that near-surface flow and turbulence parameters are predicted reasonably well with all tested horizontal grid spacings (1, 2, and 4 km) and that value added through refining grid spacing was minimal at best for conditions considered in this study. In accord with this result, it was suggested that the 16-fold increase in computing overhead associated with changing from 4- to 1-km grid spacing was not justified. Therefore, only differences among schemes at 4-km spacing were presented in detail. WRF model predictions generally overestimated the contribution to turbulence generation by mechanical forcing over buoyancy forcing in both studied CBL cases. Nonlocal parameterization schemes were found to match observational data more closely than did the local scheme, although differences among the predictions with all three schemes were relatively small.


2010 ◽  
Vol 138 (3) ◽  
pp. 688-704 ◽  
Author(s):  
Megan S. Gentry ◽  
Gary M. Lackmann

Abstract The Weather Research and Forecasting (WRF) model is used to test the sensitivity of simulations of Hurricane Ivan (2004) to changes in horizontal grid spacing for grid lengths from 8 to 1 km. As resolution is increased, minimum central pressure decreases significantly (by 30 hPa from 8- to 1-km grid spacing), although this increase in intensity is not uniform across similar reductions in grid spacing, even when pressure fields are interpolated to a common grid. This implies that the additional strengthening of the simulated tropical cyclone (TC) at higher resolution is not attributable to sampling, but is due to changes in the representation of physical processes important to TC intensity. The most apparent changes in simulated TC structure with resolution occur near a grid length of 4 km. At 4-km grid spacing and below, polygonal eyewall segments appear, suggestive of breaking vortex Rossby waves. With sub-4-km grid lengths, localized, intense updraft cores within the eyewall are numerous and both polygonal and circular eyewall shapes appear regularly. Higher-resolution simulations produce a greater variety of shapes, transitioning more frequently between polygonal and circular eyewalls relative to lower-resolution simulations. It is hypothesized that this is because of the ability to resolve a greater range of wavenumbers in high-resolution simulations. Also, as resolution is increased, a broader range of updraft and downdraft velocities is present in the eyewall. These results suggest that grid spacing of 2 km or less is needed for representation of important physical processes in the TC eyewall. Grid-length and domain size suggestions for operational prediction are provided; for operational prediction, a grid length of 3 km or less is recommended.


2020 ◽  
Vol 148 (3) ◽  
pp. 1205-1228 ◽  
Author(s):  
Tao Tao ◽  
Tetsuro Tamura

Abstract Remarkable progress has been achieved in understanding the vorticity source responsible for tornadogenesis. Nevertheless, the answer to this question remains elusive, particularly after introducing surface friction in realistic tornado simulations. In this study, a simulation using the Weather Research and Forecasting (WRF) Model is conducted based on the F3 supercell tornado that hit Tsukuba City, Japan, on 6 May 2012. The simulation uses triply nested domains, and the tornado is successfully reproduced in the innermost domain with 50-m horizontal grid spacing. The circulation analyses reveal that the frictional term is the dominant vorticity source responsible for the vortices at both the pretornadic and tornadogenesis times. The detailed vorticity source analyses of the air parcels show that the vorticity of the tornado at the genesis time mainly originates from the frictionally generated crosswise vorticity near the ground. The crosswise vorticity is directly tilted (or first exchanged into streamwise vorticity and then tilted) into vertical vorticity when the air parcels enter the tornado. A rear-flank downdraft (RFD) surge from the south and west sides of a primary low-level mesocyclone (LMC) may trigger tornadogenesis by increasing the convergence near the ground. The RFD surge is not necessarily associated with the baroclinically generated vorticity. In this study, the baroclinity is weak across the hook echo, which may cause a lack of baroclinically generated vorticity in the RFD surge.


2016 ◽  
Vol 20 (10) ◽  
pp. 4129-4142 ◽  
Author(s):  
Emma Daniels ◽  
Geert Lenderink ◽  
Ronald Hutjes ◽  
Albert Holtslag

Abstract. The effects of historic and future land use on precipitation in the Netherlands are investigated on 18 summer days with similar meteorological conditions. The days are selected with a circulation type classification and a clustering procedure to obtain a homogenous set of days that is expected to favor land impacts. Changes in precipitation are investigated in relation to the present-day climate and land use, and from the perspective of future climate and land use. To that end, the weather research and forecasting (WRF) model is used with land use maps for 1900, 2000, and 2040. In addition, a temperature perturbation of +1 °C assuming constant relative humidity is imposed as a surrogate climate change scenario. Decreases in precipitation of, respectively, 3–5 and 2–5 % are simulated following conversion of historic to present, and present to future, land use. The temperature perturbation under present land use conditions increases precipitation amounts by on average 7–8 % and amplifies precipitation intensity. However, when also considering future land use, the increase is reduced to 2–6 % on average, and no intensification of extreme precipitation is simulated. In all, the simulated effects of land use changes on precipitation in summer are smaller than the effects of climate change, but are not negligible.


2009 ◽  
Vol 137 (2) ◽  
pp. 745-765 ◽  
Author(s):  
Kevin A. Hill ◽  
Gary M. Lackmann

Abstract The Weather Research and Forecasting Advanced Research Model (WRF-ARW) was used to perform idealized tropical cyclone (TC) simulations, with domains of 36-, 12-, and 4-km horizontal grid spacing. Tests were conducted to determine the sensitivity of TC intensity to the available surface layer (SL) and planetary boundary layer (PBL) parameterizations, including the Yonsei University (YSU) and Mellor–Yamada–Janjic (MYJ) schemes, and to horizontal grid spacing. Simulations were run until a quasi-steady TC intensity was attained. Differences in minimum central pressure (Pmin) of up to 35 hPa and maximum 10-m wind (V10max) differences of up to 30 m s−1 were present between a convection-resolving nested domain with 4-km grid spacing and a parent domain with cumulus parameterization and 36-km grid spacing. Simulations using 4-km grid spacing are the most intense, with the maximum intensity falling close to empirical estimates of maximum TC intensity. Sensitivity to SL and PBL parameterization also exists, most notably in simulations with 4-km grid spacing, where the maximum intensity varied by up to ∼10 m s−1 (V10max) or ∼13 hPa (Pmin). Values of surface latent heat flux (LHFLX) are larger in MYJ than in YSU at the same wind speeds, and the differences increase with wind speed, approaching 1000 W m−2 at wind speeds in excess of 55 m s−1. This difference was traced to a larger exchange coefficient for moisture, CQ, in the MYJ scheme. The exchange coefficients for sensible heat (Cθ) and momentum (CD) varied by &lt;7% between the SL schemes at the same wind speeds. The ratio Cθ/CD varied by &lt;5% between the schemes, whereas CQ/CD was up to 100% larger in MYJ, and the latter is theorized to contribute to the differences in simulated maximum intensity. Differences in PBL scheme mixing also likely played a role in the model sensitivity. Observations of the exchange coefficients, published elsewhere and limited to wind speeds &lt;30 m s−1, suggest that CQ is too large in the MYJ SL scheme, whereas YSU incorporates values more consistent with observations. The exchange coefficient for momentum increases linearly with wind speed in both schemes, whereas observations suggest that the value of CD becomes quasi-steady beyond some critical wind speed (∼30 m s−1).


2015 ◽  
Vol 143 (12) ◽  
pp. 4997-5016 ◽  
Author(s):  
Stephen D. Nicholls ◽  
Steven G. Decker

Abstract The impact of ocean–atmosphere coupling and its possible seasonal dependence upon Weather Research and Forecasting (WRF) Model simulations of seven, wintertime cyclone events was investigated. Model simulations were identical aside from the degree of ocean model coupling (static SSTs, 1D mixed layer model, full-physics 3D ocean model). Both 1D and 3D ocean model coupling simulations show that SSTs following the passage of a nor’easter did tend to cool more strongly during the early season (October–December) and were more likely to warm late in the season (February–April). Model simulations produce SST differences of up to 1.14 K, but this change did not lead to significant changes in storm track (&lt;100 km), maximum 10-m winds (&lt;2 m s−1), or minimum sea level pressure (≤5 hPa). Simulated precipitation showed little sensitivity to model coupling, but all simulations did tend to overpredict precipitation extent (bias &gt; 1) and have low-to-moderate threat scores (0.31–0.59). Analysis of the storm environment and the overall simulation failed to reveal any statistically significant differences in model error attributable to ocean–atmosphere coupling. Despite this result, ocean model coupling can reduce dynamical field error at a single level by up to 20%, and this was slightly greater (1%–2%) with 3D ocean model coupling as compared to 1D ocean model coupling. Thus, while 3D ocean model coupling tended to generally produce more realistic simulations, its impact would likely be more profound for longer-term simulations.


2016 ◽  
Vol 144 (3) ◽  
pp. 1161-1177 ◽  
Author(s):  
Hyeyum Hailey Shin ◽  
Jimy Dudhia

Abstract Planetary boundary layer (PBL) parameterizations in mesoscale models have been developed for horizontal resolutions that cannot resolve any turbulence in the PBL, and evaluation of these parameterizations has been focused on profiles of mean and parameterized flux. Meanwhile, the recent increase in computing power has been allowing numerical weather prediction (NWP) at horizontal grid spacings finer than 1 km, at which kilometer-scale large eddies in the convective PBL are partly resolvable. This study evaluates the performance of convective PBL parameterizations in the Weather Research and Forecasting (WRF) Model at subkilometer grid spacings. The evaluation focuses on resolved turbulence statistics, considering expectations for improvement in the resolved fields by using the fine meshes. The parameterizations include four nonlocal schemes—Yonsei University (YSU), asymmetric convective model 2 (ACM2), eddy diffusivity mass flux (EDMF), and total energy mass flux (TEMF)—and one local scheme, the Mellor–Yamada–Nakanishi–Niino (MYNN) level-2.5 model. Key findings are as follows: 1) None of the PBL schemes is scale-aware. Instead, each has its own best performing resolution in parameterizing subgrid-scale (SGS) vertical transport and resolving eddies, and the resolution appears to be different between heat and momentum. 2) All the selected schemes reproduce total vertical heat transport well, as resolved transport compensates differences of the parameterized SGS transport from the reference SGS transport. This interaction between the resolved and SGS parts is not found in momentum. 3) Those schemes that more accurately reproduce one feature (e.g., thermodynamic transport, momentum transport, energy spectrum, or probability density function of resolved vertical velocity) do not necessarily perform well for other aspects.


2006 ◽  
Vol 7 ◽  
pp. 25-29 ◽  
Author(s):  
J. B. Klemp

Abstract. The Weather Research and Forecasting (WRF) Model has been designed to be an efficient and flexible simulation system for use across a broad range of weather-forecast and idealized-research applications. Of particular interest is the use of WRF in nonhydrostatic applications in which moist-convective processes are treated explicitly, thereby avoiding the ambiguities of cumulus parameterization. To evaluate the capabilities of WRF for convection-resolving applications, real-time forecasting experiments have been conducted with 4 km horizontal mesh spacing for both convective systems in the central U.S. and for hurricanes approaching landfall in the southeastern U.S. These forecasts demonstrate a good potential for improving the forecast accuracy of the timing and location of these systems, as well as providing more detailed information on their structure and evolution that is not available in current coarser resolution operational forecast models.


Sign in / Sign up

Export Citation Format

Share Document