scholarly journals Characteristics of VIRS Signals within Pixels of TRMM PR for Warm Rain in the Tropics and Subtropics

2017 ◽  
Vol 56 (3) ◽  
pp. 789-801 ◽  
Author(s):  
Yilun Chen ◽  
Yunfei Fu

AbstractMany data-merging studies of the Tropical Rainfall Measuring Mission (TRMM) satellite involve the integration of high-resolution Visible and Infrared Scanner (VIRS) signals (~2 km) with low-resolution Precipitation Radar (PR) footprint (~5 km) to obtain comprehensive information from observations. Based on the merged dataset, “warm rain” is generally identified as having averaging 10.8-μm brightness temperatures (TB10.8) exceeding 273 K and the existence of surface rainfall. However, this integration may lead to the misidentification of warm rain because the beam-filling problem (nonuniform TB10.8 in PR pixels) is not fully considered through the method using high-resolution TB10.8 to match low-resolution rainfall. To assess the bias that is associated with identifying warm rain, a new dataset that includes all VIRS signals within the PR resolution is established, and the characteristics of this warm rain in the summers of 1998–2012 are analyzed. The results show that clear-sky pixels and “cold” pixels probably exist in some apparent warm-rain cases (60.5% and 11.2% of the time, respectively). According to this finding, warm-rain pixels are divided into pixels with and without clear sky. Statistical analysis shows that the existence of clear-sky pixels has a huge influence on the characteristics of the warm-rain pixels. The implications of this study are that many of the warm-rain cases are in fact not warm rain. When studying warm rain, the situation whereby the edges of pixels are clear sky should be fully considered. Also, when computing the weighted average brightness temperature and other characteristics of warm-rain pixels, parts that are clear-sky or cold pixels should be expelled to mitigate beam-filling problems.

2010 ◽  
Vol 27 (10) ◽  
pp. 1609-1623 ◽  
Author(s):  
B. Petrenko ◽  
A. Ignatov ◽  
Y. Kihai ◽  
A. Heidinger

Abstract The Advanced Clear Sky Processor for Oceans (ACSPO) generates clear-sky products, such as SST, clear-sky radiances, and aerosol, from Advanced Very High Resolution Radiometer (AVHRR)-like measurements. The ACSPO clear-sky mask (ACSM) identifies clear-sky pixels within the ACSPO products. This paper describes the ACSM structure and compares the performances of ACSM and its predecessor, Clouds from AVHRR Extended Algorithm (CLAVRx). ACSM essentially employs online clear-sky radiative transfer simulations enabled within ACSPO with the Community Radiative Transfer Model (CRTM) in conjunction with numerical weather prediction atmospheric [Global Forecast System (GFS)] and SST [Reynolds daily high-resolution blended SST (DSST)] fields. The baseline ACSM tests verify the accuracy of fitting observed brightness temperatures with CRTM, check retrieved SST for consistency with Reynolds SST, and identify ambient cloudiness at the boundaries of cloudy systems. Residual cloud effects are screened out with several tests, adopted from CLAVRx, and with the SST spatial uniformity test designed to minimize misclassification of sharp SST gradients as clouds. Cross-platform and temporal consistencies of retrieved SSTs are maintained by accounting for SST and brightness temperature biases, estimated within ACSPO online and independently from ACSM. The performance of ACSM is characterized in terms of statistics of deviations of retrieved SST from the DSST. ACSM increases the amount of “clear” pixels by 30% to 40% and improves statistics of retrieved SST compared with CLAVRx. ACSM is also shown to be capable of producing satisfactory statistics of SST anomalies if the reference SST field for the exact date of observations is unavailable at the time of processing.


2011 ◽  
Vol 28 (10) ◽  
pp. 1199-1205 ◽  
Author(s):  
Anders V. Lindfors ◽  
Ian A. Mackenzie ◽  
Simon F. B. Tett ◽  
Lei Shi

Abstract A climatology of the diurnal cycles of HIRS clear-sky brightness temperatures was developed based on measurements over the period 2002–07. This was done by fitting a Fourier series to monthly gridded brightness temperatures of HIRS channels 1–12. The results show a strong land–sea contrast with stronger diurnal cycles over land, and extending from the surface up to HIRS channel 6 or 5, with regional maxima over the subtropics. Over seas, the diurnal cycles are generally small and therefore challenging to detect. A Monte Carlo uncertainty analysis showed that more robust results are reached by aggregating the data zonally before applying the fit. The zonal fits indicate that small diurnal cycles do exist over sea. The results imply that for a long-lived satellite such as NOAA-14, drift in the overpass time can cause a diurnal sampling bias of more than 5 K for channel 8 (surface and lower troposphere).


2009 ◽  
Vol 22 (3) ◽  
pp. 767-779 ◽  
Author(s):  
Chuntao Liu ◽  
Edward J. Zipser

Abstract How much precipitation is contributed by warm rain systems over the tropics? What is the typical size, intensity, and echo top of warm rain events observed by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar over different regions of the tropics? What proportion of warm raining areas is actually attached to the edges of cold systems? Are there mesoscale warm raining systems, and if so, where and when do they occur? To answer these questions, a 9-yr TRMM precipitation feature database is used in this study. First, warm rain features in 20°S–20°N are selected by specifying precipitation features 1) with minimum infrared brightness temperature > 0°C, 2) with TRMM Precipitation Radar (PR) echo top below freezing level, or 3) without any ice-scattering signature in the microwave observations, respectively. Then, the geographical, seasonal, and diurnal variations of the rain volume inside warm rain features defined in these three ways are presented. The characteristics of warm rain features are summarized. Raining pixels with cloud-top temperature above 0°C contribute 20% of the rainfall over tropical oceans and 7.5% over tropical land. However, about half of the warm pixels over oceans and two-thirds of the warm pixels over land are attached to cold precipitation systems. A large amount of warm rainfall occurs over oceans near windward coasts during winter. Most of the warm rain systems have small size < 100 km2 and weak radar echo with a modal maximum near-surface reflectivity around 23 dBZ. However, mesoscale warm rain systems with strong radar echoes do occur in large regions of the tropical oceans, more during the nighttime than during daytime. Though the mean height of the warm precipitation features over oceans is lower than that over land, there is no significant regional difference in its size and intensity.


2011 ◽  
Vol 12 (3) ◽  
pp. 394-412 ◽  
Author(s):  
Chuntao Liu

Abstract The rainfall contributions from precipitation features (PFs) with full spectra of different sizes and convective intensities over the tropics and subtropics are summarized using 12 yr of version 6 Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and Microwave Imager (TMI) observations. Regional, seasonal, and diurnal variations of the rainfall contributions from various PFs are shown, with the global distribution of the sizes, PR echo tops, maximum heights of 30 dBZ, and minimum TMI 85-GHz brightness temperatures of PFs above which contribute half of the rainfall in each 2° × 2° region. Though the results from radar and microwave observations generally agree with each other, some large differences exist over land. Seasonal variations of sizes and intensities of precipitation systems are found over the northeast Pacific, northern SPCZ, and some land areas in addition to the well-known monsoon regions. The diurnal cycles of rainfall over land and ocean are interpreted with the combinations of life cycles of various precipitation systems, using the diurnal variations of rainfall contributions from precipitation systems with different sizes and intensities. The long-duration rainfall events with more than four consecutive 3-h periods with rain at a grid point are identified from 11 yr of TRMM 3B42 products. These “12-h rain events” contribute a larger proportion of the total rainfall over ocean than over land. They are mostly correlated with precipitation systems with large sizes and intense convection. However, they can also be caused by some shallow persistent precipitation systems, such as those over the northeast slope of the Andes in Peru in spring and fall and over the west coast of India in summer.


2016 ◽  
Author(s):  
Anne Garnier ◽  
Noëlle A. Scott ◽  
Jacques Pelon ◽  
Raymond Armante ◽  
Laurent Crépeau ◽  
...  

Abstract. The quality of the calibrated radiances of the medium-resolution Imaging Infrared Radiometer (IIR) on-board the CALIPSO satellite is quantitatively controlled since the beginning of the mission in June 2006. Two complementary “relative” and “stand-alone” approaches are used, which are related to comparisons of measured brightness temperatures, and to model-to-observations comparisons, respectively. In both cases, IIR channels 1 (8.65 μm), 2 (10.6 μm), and 3 (12.05 μm) are paired with MODIS/Aqua “companion” channels 29, 31, and 32, respectively, as well as with SEVIRI/Meteosat companion channels IR8.7, IR10.8 and IR12, respectively. These pairs were selected before launch to meet radiometric, geometric and space-time constraints. The pre-launch studies were based on simulations and sensitivity studies using the 4A/OP radiative transfer model fed with the more than 2300 atmospheres of the climatological TIGR dataset further sorted out in five air mass types. Over the 9.5 years of operation since launch, in a semi-operational process, collocated measurements of IIR and of its companion channels have been compared at all latitudes over ocean, during day and night, and for all types of scenes in a wide range of brightness temperatures when dealing with the relative approach. The relative approach shows an excellent stability of IIR2-MODIS31 and IIR3-MODIS32 brightness temperature differences (BTD) since launch A slight trend of the IIR1-MODIS29 BTD, equal to −0.02 K/year on average over 9.5 years, is detected by the relative approach at all latitudes and all scene temperatures. For the stand-alone approach, clear sky measurements only are considered, which are directly compared with simulations using 4A/OP and collocated ERA-Interim reanalyses. The clear sky mask is derived from collocated observations from IIR and the CALIPSO lidar. Simulations for clear sky pixels in the tropics reproduce the differences between IIR1 and MODIS29 within 0.02 K, and between IIR2 and MODIS31 within 0.04 K, whereas IIR3-MODIS32 is larger than simulated by 0.26 K. The stand-alone approach indicates that the trend identified from the relative approach originates from MODIS29, whereas no trend (less than ±0.004 K/year) is evidenced for any of the IIR channels. Finally, a year-by-year seasonal bias between nighttime and daytime IIR-MODIS BTDs was found at mid-latitude in the northern hemisphere by the relative approach. It is due to a nighttime IIR bias as determined by the stand-alone approach, which originates from a calibration drift during day-to-night transitions. The largest bias is in June/July with IIR2 and IIR3 too warm by 0.4 K on average, and IIR1 too warm by 0.2 K.


2013 ◽  
Vol 6 (2) ◽  
pp. 2829-2855
Author(s):  
S. Bley ◽  
H. Deneke

Abstract. A robust threshold-based cloud mask for the high-resolution visible (HRV) channel (1 × 1 km2) of the METEOSAT SEVIRI instrument is introduced and evaluated. It is based on operational EUMETSAT cloud mask for the low resolution channels of SEVIRI (3 × 3 km2), which is used for the selection of suitable thresholds to ensure consistency with its results. The aim of using the HRV channel is to resolve small-scale cloud structures which cannot be detected by the low resolution channels. We find that it is of advantage to apply thresholds relative to clear-sky reflectance composites, and to adapt the threshold regionally. Furthermore, the accuracy of the different spectral channels for thresholding and the suitability of the HRV channel are investigated for cloud detection. The case studies show different situations to demonstrate the behaviour for various surface and cloud conditions. Overall, between 4 and 24% of cloudy low-resolution SEVIRI pixels are found to contain broken clouds in our test dataset depending on considered region. Most of these broken pixels are classified as cloudy by EUMETSAT's cloud mask, which will likely result in an overestimate if the mask is used as estimate of cloud fraction.


2019 ◽  
Vol 19 (6) ◽  
pp. 3733-3746
Author(s):  
Klaus Gierens ◽  
Kostas Eleftheratos

Abstract. We present a novel retrieval for upper-tropospheric humidity (UTH) from High-resolution Infrared Radiation Sounder (HIRS) channel 12 radiances that successfully bridges the wavelength change from 6.7 to 6.5 µm that occurred from HIRS/2 on National Oceanic and Atmospheric Administration satellite NOAA-14 to HIRS/3 on satellite NOAA-15. The jump in average brightness temperature (in the water vapour channel; T12) that this change had caused (about −7 K) could be fixed with a statistical inter-calibration method (Shi and Bates, 2011). Unfortunately, the retrieval of UTHi (upper-tropospheric humidity with respect to ice) based on the inter-calibrated data was not satisfying at the high tail of the distribution of UTHi. Attempts to construct a better inter-calibration in the low T12 range (equivalent to the high UTHi range) were either not successful (Gierens et al., 2018) or required additional statistically determined corrections to the measured brightness temperatures (Gierens and Eleftheratos, 2017). The new method presented here is based on the original one (Soden and Bretherton, 1993; Stephens et al., 1996; Jackson and Bates, 2001), but it extends linearisations in the formulation of water vapour saturation pressure and in the temperature dependence of the Planck function to second order. To achieve the second-order formulation we derive the retrieval from the beginning, and we find that the most influential ingredient is the use of different optical constants for the two involved channel wavelengths (6.7 and 6.5 µm). The result of adapting the optical constant is an almost perfect match between UTH data measured by HIRS/2 on NOAA-14 and HIRS/3 on NOAA-15 on 1004 common days of operation. The method is applied to both UTH and UTHi. For each case retrieval coefficients are derived. We present a number of test applications, e.g. on computed brightness temperatures based on high-resolution radiosonde profiles, on the brightness temperatures measured by the satellites on the mentioned 1004 common days of operation. Further, we present time series of the occurrence frequency of high UTHi cases, and we show the overall probability distribution of UTHi. The two latter applications expose indications of moistening of the upper troposphere over the last 35 years. Finally, we discuss the significance of UTH. We state that UTH algorithms cannot be judged for their correctness or incorrectness, since there is no true UTH. Instead, UTH algorithms should fulfill a number of usefulness postulates, which we suggest and discuss.


2013 ◽  
Vol 13 (14) ◽  
pp. 6907-6920 ◽  
Author(s):  
L. Shi ◽  
C. J. Schreck III ◽  
V. O. John

Abstract. A new version of the High-Resolution Infrared Radiation Sounder (HIRS) upper tropospheric water vapor channel (channel 12) brightness temperature dataset is developed using intersatellite calibrated data. In this dataset, only those pixels affected by upper tropospheric clouds are discarded. Compared to the previous version that was based on column-clear-sky data, the new version has much better daily spatial coverage. The HIRS observation patterns are compared to microwave sounder measurements. The differences between the two types of sounders vary with respect to brightness temperature with larger differences for higher (dry) values. Correlations between the HIRS upper tropospheric water vapor channel brightness temperatures and several major climate indices show strong signals during cold seasons. The selected climate indices track climate variation signals covering regions from the tropics to the poles. Qualitatively, moist signals are correlated with troughs and ascending branches of the circulation, while dry signals occur with ridges and descent. These correlations show the potential of using the upper tropospheric water vapor channel brightness temperature dataset together with a suite of many atmospheric variables to monitor regional climate changes and locate global teleconnection patterns.


2013 ◽  
Vol 6 (10) ◽  
pp. 2713-2723 ◽  
Author(s):  
S. Bley ◽  
H. Deneke

Abstract. A threshold-based cloud mask for the high-resolution visible (HRV) channel (1 × 1 km2) of the Meteosat SEVIRI (Spinning Enhanced Visible and Infrared Imager) instrument is introduced and evaluated. It is based on operational EUMETSAT cloud mask for the low-resolution channels of SEVIRI (3 × 3 km2), which is used for the selection of suitable thresholds to ensure consistency with its results. The aim of using the HRV channel is to resolve small-scale cloud structures that cannot be detected by the low-resolution channels. We find that it is of advantage to apply thresholds relative to clear-sky reflectance composites, and to adapt the threshold regionally. Furthermore, the accuracy of the different spectral channels for thresholding and the suitability of the HRV channel are investigated for cloud detection. The case studies show different situations to demonstrate the behavior for various surface and cloud conditions. Overall, between 4 and 24% of cloudy low-resolution SEVIRI pixels are found to contain broken clouds in our test data set depending on considered region. Most of these broken pixels are classified as cloudy by EUMETSAT's cloud mask, which will likely result in an overestimate if the mask is used as an estimate of cloud fraction. The HRV cloud mask aims for small-scale convective sub-pixel clouds that are missed by the EUMETSAT cloud mask. The major limit of the HRV cloud mask is the minimum cloud optical thickness (COT) that can be detected. This threshold COT was found to be about 0.8 over ocean and 2 over land and is highly related to the albedo of the underlying surface.


2020 ◽  
Vol 148 (2) ◽  
pp. 825-847 ◽  
Author(s):  
Junkyung Kay ◽  
Xuguang Wang

Abstract A multiresolution ensemble (MR-ENS) method is developed to resolve a wider range of scales of the background error covariance (BEC) in the hybrid four-dimensional ensemble–variational (4DEnVar) while saving computational costs. MR-ENS is implemented in the NCEP Global Forecast System (GFS) gridpoint statistical interpolation (GSI) hybrid 4DEnVar. MR-ENS generates analysis increment by incorporating high-resolution static BEC and flow-dependent ensemble BECs from both high and low resolutions. MR-ENS is compared with three 4DEnVar update approaches: 1) the single-resolution (SR)-Low approach where the analysis increments are generated from the ensemble BEC and the static BEC at the same low resolution; 2) the dual-resolution (DR) approach where the analysis increment is generated using the high-resolution static BEC and low-resolution ensemble BEC; and 3) the SR-High approach, which is the same as 1) except that all covariances are at high-resolution. Experiments show that MR-ENS improves global and tropical cyclone track forecasts compared to SR-Low and DR. Inclusion of the high-resolution ensemble leads to increased background ensemble spread, better fitting of the background to observations, increased effective ranks, more accurate ensemble error correlation, and increased power of analysis increment at small scales. The majority of the improvement of MR-ENS relative to SR-Low is due to the partial use of high-resolution background ensemble. Compared to SR-High, MR-ENS decreases the overall cost by about 40% and shows comparable global and tropical cyclone track forecast performances. Diagnostics show that particularly in the tropics, MR-ENS improves the analysis increment over a wide range of scales and increases the effective rank of the ensemble BEC to the degree comparable to SR-High.


Sign in / Sign up

Export Citation Format

Share Document