Test of a Modified Infrared-Only ABI Cloud Mask Algorithm for AHI Radiance Observations

2016 ◽  
Vol 55 (11) ◽  
pp. 2529-2546 ◽  
Author(s):  
X. Zhuge ◽  
X. Zou

AbstractAssimilation of infrared channel radiances from geostationary imagers requires an algorithm that can separate cloudy radiances from clear-sky ones. An infrared-only cloud mask (CM) algorithm has been developed using the Advanced Himawari Imager (AHI) radiance observations. It consists of a new CM test for optically thin clouds, two modified Advanced Baseline Imager (ABI) CM tests, and seven other ABI CM tests. These 10 CM tests are used to generate composite CMs for AHI data, which are validated by using the Moderate Resolution Imaging Spectroradiometer (MODIS) CMs. It is shown that the probability of correct typing (PCT) of the new CM algorithm over ocean and over land is 89.73% and 90.30%, respectively and that the corresponding leakage rates (LR) are 6.11% and 4.21%, respectively. The new infrared-only CM algorithm achieves a higher PCT and a lower false-alarm rate (FAR) over ocean than does the Clouds from the Advanced Very High Resolution Radiometer (AVHRR) Extended System (CLAVR-x), which uses not only the infrared channels but also visible and near-infrared channels. A slightly higher FAR of 7.92% and LR of 6.18% occurred over land during daytime. This result requires further investigation.

2016 ◽  
Vol 51 (7) ◽  
pp. 858-868
Author(s):  
Marcos Cicarini Hott ◽  
Luis Marcelo Tavares de Carvalho ◽  
Mauro Antonio Homem Antunes ◽  
Polyanne Aguiar dos Santos ◽  
Tássia Borges Arantes ◽  
...  

Abstract: The objective of this work was to analyze the development of grasslands in Zona da Mata, in the state of Minas Gerais, Brazil, between 2000 and 2013, using a parameter based on the growth index of the normalized difference vegetation index (NDVI) from the moderate resolution imaging spectroradiometer (Modis) data series. Based on temporal NDVI profiles, which were used as indicators of edaphoclimatic conditions, the growth index (GI) was estimated for 16-day periods throughout the spring season of 2012 to early 2013, being compared with the average GI from 2000 to 2011, used as the reference period. Currently, the grassland areas in Zona da Mata occupy approximately 1.2 million hectares. According to the used methods, 177,322 ha (14.61%) of these grassland areas have very low vegetative growth; 577,698 ha (45.96%) have low growth; 433,475 ha (35.72%) have balanced growth; 39,980 ha (3.29%) have high growth; and 5,032 ha (0.41%) have very high vegetative growth. The grasslands had predominantly low vegetative growth during the studied period, and the NDVI/Modis series is a useful source of data for regional assessments.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3569
Author(s):  
Calleja ◽  
Corbea-Pérez ◽  
Fernández ◽  
Recondo ◽  
Peón ◽  
...  

The aim of this work is to investigate whether snow albedo seasonality and trend under all sky conditions at Johnsons Glacier (Livingston Island, Antarctica) can be tracked using the Moderate Resolution Imaging Spectroradiometer (MODIS) snow albedo daily product MOD10A1. The time span is from December 2006 to February 2015. As the MOD10A1 snow albedo product has never been used in Antarctica before, we also assess the performance for the MOD10A1 cloud mask. The motivation for this work is the need for a description of snow albedo under all sky conditions (including overcast days) using satellite data with mid-spatial resolution. In-situ albedo was filtered with a 5-day windowed moving average, while the MOD10A1 data were filtered using a maximum filter. Both in-situ and MOD10A1 data follow an exponential decay during the melting season, with a maximum decay of 0.049/0.094 day−1 (in-situ/MOD10A1) for the 2006–2007 season and a minimum of 0.016/0.016 day−1 for the 2009–2010 season. The duration of the decay varies from 85 days (2007–2008) to 167 days (2013–2014). Regarding the albedo trend, both data sets exhibit a slight increase of albedo, which may be explained by an increase of snowfall along with a decrease of snowmelt in the study area. Annual albedo increases of 0.2% and 0.7% are obtained for in-situ and MOD10A1 data, respectively, which amount to respective increases of 2% and 6% in the period 2006–2015. We conclude that MOD10A1 can be used to characterize snow albedo seasonality and trend on Livingston Island when filtered with a maximum filter.


2017 ◽  
Vol 52 (11) ◽  
pp. 1063-1071 ◽  
Author(s):  
Michelle Cristina Araujo Picoli ◽  
Daniel Garbellini Duft ◽  
Pedro Gerber Machado

Abstract: The objective of this work was to evaluate the potential of several spectral indices, used on moderate resolution imaging spectroradiometer (Modis) images, in identifying drought events in sugarcane. Images of Terra and Aqua satellites were used to calculate the spectral indices, using visible (red), near infrared, and shortwave infrared bands, and eight indices were selected: NDVI, EVI2, GVMI, NDI6, NDI7, NDWI, SRWI, and MSI. The indices were calculated using images between October and April of the crop years 2007/08, 2008/09, 2009/10, and 2013/14. These indices were then correlated with the standardized precipitation-evapotranspiration index (SPEI), calculated for 1, 3, and 6 months. Four of them had significant correlations with SPEI: GVMI, MSI, NDI7, and NDWI. Spectral indices from Modis sensor on board the Aqua satellite (MYD) were more suited for drought detection, and March provided the most relevant indices for that purpose. Drought indices calculated from Modis sensor data are effective for detecting sugarcane drought events, besides being able to indicate seasonal fluctuations.


2020 ◽  
Vol 12 (24) ◽  
pp. 4096 ◽  
Author(s):  
Kerry Meyer ◽  
Steven Platnick ◽  
Robert Holz ◽  
Steve Dutcher ◽  
Greg Quinn ◽  
...  

Climate studies, including trend detection and other time series analyses, necessarily require stable, well-characterized and long-term data records. For satellite-based geophysical retrieval datasets, such data records often involve merging the observational records of multiple similar, though not identical, instruments. The National Aeronautics and Space Administration (NASA) cloud mask (CLDMSK) and cloud-top and optical properties (CLDPROP) products are designed to bridge the observational records of the Moderate-resolution Imaging Spectroradiometer (MODIS) onboard NASA’s Aqua satellite and the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the joint NASA/National Oceanic and Atmospheric Administration (NOAA) Suomi National Polar-orbiting Partnership (SNPP) satellite and NOAA’s new generation of operational polar-orbiting weather platforms (NOAA-20+). Early implementations of the CLDPROP algorithms on Aqua MODIS and SNPP VIIRS suffered from large intersensor biases in cloud optical properties that were traced back to relative radiometric inconsistency in analogous shortwave channels on both imagers, with VIIRS generally observing brighter top-of-atmosphere spectral reflectance than MODIS (e.g., up to 5% brighter in the 0.67 µm channel). Radiometric adjustment factors for the SNPP and NOAA-20 VIIRS shortwave channels used in the cloud optical property retrievals are derived from an extensive analysis of the overlapping observational records with Aqua MODIS, specifically for homogenous maritime liquid water cloud scenes for which the viewing/solar geometry of MODIS and VIIRS match. Application of these adjustment factors to the VIIRS L1B prior to ingestion into the CLDMSK and CLDPROP algorithms yields improved intersensor agreement, particularly for cloud optical properties.


2013 ◽  
Vol 6 (2) ◽  
pp. 3215-3247 ◽  
Author(s):  
J. F. Meirink ◽  
R. A. Roebeling ◽  
P. Stammes

Abstract. Accurate calibration of satellite imagers is a prerequisite for using their measurements in climate applications. Here we present a method for the inter-calibration of geostationary and polar-orbiting imager solar channels based on regressions of collocated near-nadir radiances. Specific attention is paid to correcting for differences in spectral response between instruments. The method is used to calibrate the solar channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on the geostationary Meteosat satellite with corresponding channels of the Moderate Resolution Imaging Spectroradiometer (MODIS) on the polar-orbiting Aqua satellite. The SEVIRI operational calibration is found to be stable during the years 2004 to 2009 but off by −8, −6, and +3.5% for channels 1 (0.6 μm), 2 (0.8 μm), and 3 (1.6 μm), respectively. These results are robust for a range of choices that can be made regarding data collocation and selection, as long as the viewing and illumination geometries of the two instruments are matched. Uncertainties in the inter-calibration method are estimated to be 1% for channel 1 and 1.5% for channels 2 and 3. A specific application of the method is the inter-calibration of polar imagers using SEVIRI as a transfer instrument. This offers an alternative to direct inter-calibration, which in general has to rely on high-latitude collocations. Using this method we have tied MODIS-Terra and Advanced Very High Resolution Radiometer (AVHRR) instruments on National Oceanic and Atmospheric Administration (NOAA) satellites 17 and 18 to MODIS-Aqua for the years 2007 to 2009. While reflectances of the two MODIS instruments differ less than 2% for all channels considered, deviations of an existing AVHRR calibration from MODIS-Aqua reach −3.5 and +2.5% for the 0.8 and 1.6 μm channels, respectively.


2016 ◽  
Vol 17 (7) ◽  
pp. 1999-2011 ◽  
Author(s):  
Steven D. Miller ◽  
Fang Wang ◽  
Ann B. Burgess ◽  
S. McKenzie Skiles ◽  
Matthew Rogers ◽  
...  

Abstract Runoff from mountain snowpack is an important freshwater supply for many parts of the world. The deposition of aeolian dust on snow decreases snow albedo and increases the absorption of solar irradiance. This absorption accelerates melting, impacting the regional hydrological cycle in terms of timing and magnitude of runoff. The Moderate Resolution Imaging Spectroradiometer (MODIS) Dust Radiative Forcing in Snow (MODDRFS) satellite product allows estimation of the instantaneous (at time of satellite overpass) surface radiative forcing caused by dust. While such snapshots are useful, energy balance modeling requires temporally resolved radiative forcing to represent energy fluxes to the snowpack, as modulated primarily by varying cloud cover. Here, the instantaneous MODDRFS estimate is used as a tie point to calculate temporally resolved surface radiative forcing. Dust radiative forcing scenarios were considered for 1) clear-sky conditions and 2) all-sky conditions using satellite-based cloud observations. Comparisons against in situ stations in the Rocky Mountains show that accounting for the temporally resolved all-sky solar irradiance via satellite retrievals yields a more representative time series of dust radiative effects compared to the clear-sky assumption. The modeled impact of dust on enhanced snowmelt was found to be significant, accounting for nearly 50% of the total melt at the more contaminated station sites. The algorithm is applicable to regional basins worldwide, bearing relevance to both climate process research and the operational management of water resources.


2009 ◽  
Vol 26 (7) ◽  
pp. 1388-1397 ◽  
Author(s):  
Keith D. Hutchison ◽  
Robert L. Mahoney ◽  
Eric F. Vermote ◽  
Thomas J. Kopp ◽  
John M. Jackson ◽  
...  

Abstract A geometry-based approach is presented to identify cloud shadows using an automated cloud classification algorithm developed for the National Polar-orbiting Operational Environmental Satellite System (NPOESS) program. These new procedures exploit both the cloud confidence and cloud phase intermediate products generated by the Visible/Infrared Imager/Radiometer Suite (VIIRS) cloud mask (VCM) algorithm. The procedures have been tested and found to accurately detect cloud shadows in global datasets collected by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and are applied over both land and ocean background conditions. These new procedures represent a marked departure from those used in the heritage MODIS cloud mask algorithm, which utilizes spectral signatures in an attempt to identify cloud shadows. However, they more closely follow those developed to identify cloud shadows in the MODIS Surface Reflectance (MOD09) data product. Significant differences were necessary in the implementation of the MOD09 procedures to meet NPOESS latency requirements in the VCM algorithm. In this paper, the geometry-based approach used to predict cloud shadows is presented, differences are highlighted between the heritage MOD09 algorithm and new VIIRS cloud shadow algorithm, and results are shown for both these algorithms plus cloud shadows generated by the spectral-based approach. The comparisons show that the geometry-based procedures produce cloud shadows far superior to those predicted with the spectral procedures. In addition, the new VCM procedures predict cloud shadows that agree well with those found in the MOD09 product while significantly reducing the execution time as required to meet the operational time constraints of the NPOESS system.


2020 ◽  
Vol 12 (20) ◽  
pp. 3334 ◽  
Author(s):  
Richard A. Frey ◽  
Steven A. Ackerman ◽  
Robert E. Holz ◽  
Steven Dutcher ◽  
Zach Griffith

This paper introduces the Continuity Moderate Resolution Imaging Spectroradiometer (MODIS)-Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Mask (MVCM), a cloud detection algorithm designed to facilitate continuity in cloud detection between the MODIS (Moderate Resolution Imaging Spectroradiometer) on the Aqua and Terra platforms and the series of VIIRS (Visible Infrared Imaging Radiometer Suite) instruments, beginning with the Soumi National Polar-orbiting Partnership (SNPP) spacecraft. It is based on the MODIS cloud mask that has been operating since 2000 with the launch of the Terra spacecraft (MOD35) and continuing in 2002 with Aqua (MYD35). The MVCM makes use of fourteen spectral bands that are common to both MODIS and VIIRS so as to create consistent cloud detection between the two instruments and across the years 2000–2020 and beyond. Through comparison data sets, including collocated Aqua MODIS and Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) from the A-Train, this study was designed to assign statistical consistency benchmarks between the MYD35 and MVCM cloud masks. It is shown that the MVCM produces consistent cloud detection results between Aqua MODIS, SNPP VIIRS, and NOAA-20 VIIRS and that the quality is comparable to the standard Aqua MODIS cloud mask. Globally, comparisons with collocated CALIOP lidar show combined clear and cloudy sky hit rates of 88.2%, 87.5%, 86.8%, and 86.8% for MYD35, MVCM Aqua MODIS, MVCM SNPP VIIRS, and MVCM NOAA-20 VIIRS, respectively, for June through until August, 2018. For the same months and in the same order for 60S–60N, hit rates are 90.7%, 90.5%, 90.1%, and 90.3%. From the time series constructed from gridded daily means of 60S–60N cloud fractions, we found that the mean day-to-day cloud fraction differences/standard deviations in percent to be 0.68/0.55, 0.94/0.64, −0.20/0.50, and 0.44/0.82 for MVCM Aqua MODIS-MVCM SNPP VIIRS day and night, and MVCM NOAA-20 VIIRS-MVCM SNPP VIIRS day and night, respectively. It is seen that the MODIS and VIIRS 1.38 µm cirrus detection bands perform similarly but with MODIS detecting slightly more clouds in the middle to high levels of the troposphere and the VIIRS detecting more in the upper troposphere above 16 km. In the Arctic, MVCM Aqua MODIS and SNPP VIIRS reported cloud fraction differences of 0–3% during the mid-summer season and −3–4% during the mid-winter.


2013 ◽  
Vol 6 (11) ◽  
pp. 2989-3034 ◽  
Author(s):  
R. C. Levy ◽  
S. Mattoo ◽  
L. A. Munchak ◽  
L. A. Remer ◽  
A. M. Sayer ◽  
...  

Abstract. The twin Moderate resolution Imaging Spectroradiometer (MODIS) sensors have been flying on Terra since 2000 and Aqua since 2002, creating an extensive data set of global Earth observations. Here, we introduce the Collection 6 (C6) algorithm to retrieve aerosol optical depth (AOD) and aerosol size parameters from MODIS-observed spectral reflectance. While not a major overhaul from the previous Collection 5 (C5) version, there are enough changes that there are significant impacts to the products and their interpretation. The C6 aerosol data set will be created from three separate retrieval algorithms that operate over different surface types. These are the two "Dark Target" (DT) algorithms for retrieving (1) over ocean (dark in visible and longer wavelengths) and (2) over vegetated/dark-soiled land (dark in the visible), plus the "Deep Blue" (DB) algorithm developed originally for retrieving (3) over desert/arid land (bright in the visible). Here, we focus on DT-ocean and DT-land (#1 and #2). We have updated assumptions for central wavelengths, Rayleigh optical depths and gas (H2O, O3, CO2, etc.) absorption corrections, while relaxing the solar zenith angle limit (up to ≤ 84°) to increase poleward coverage. For DT-land, we have updated the cloud mask to allow heavy smoke retrievals, fine-tuned the assignments for aerosol type as function of season/location, corrected bugs in the Quality Assurance (QA) logic, and added diagnostic parameters such topographic altitude. For DT-ocean, improvements include a revised cloud mask for thin-cirrus detection, inclusion of wind speed dependence on the surface reflectance, updates to logic of QA Confidence flag (QAC) assignment, and additions of important diagnostic information. At the same time, we quantified how "upstream" changes to instrument calibration, land/sea masking and cloud masking will also impact the statistics of global AOD, and affect Terra and Aqua differently. For Aqua, all changes will result in reduced global AOD (by 0.02) over ocean and increased AOD (by 0.02) over land, along with changes in spatial coverage. We compared preliminary data to surface-based sun photometer data, and show that C6 should improve upon C5. C6 will include a merged DT/DB product over semi-arid land surfaces for reduced-gap coverage and better visualization, and new information about clouds in the aerosol field. Responding to the needs of the air quality community, in addition to the standard 10 km product, C6 will include a global (DT-land and DT-ocean) aerosol product at 3 km resolution.


Sign in / Sign up

Export Citation Format

Share Document