Symmetric Instability in the Outflow Layer of a Major Hurricane

2014 ◽  
Vol 71 (10) ◽  
pp. 3739-3746 ◽  
Author(s):  
John Molinari ◽  
David Vollaro

Abstract A set of 327 dropsondes from the NOAA G-IV aircraft was used to create a composite analysis of the azimuthally averaged absolute angular momentum in the outflow layer of major Hurricane Ivan (2004). Inertial instability existed over a narrow layer in the upper troposphere between the 350- and 450-km radii. Isolines of potential and equivalent potential temperature showed that the conditions for both dry and moist symmetric instability were satisfied in the same region, but over a deeper layer from 9 to 12 km. The radial flow maximized at the outer edge of the unstable region. The symmetrically unstable state existed above a region of outward decrease of temperature between the cirrus overcast of the storm and clear air outside. It is hypothesized that the temperature gradient was created as a result of longwave heating within the cirrus overcast and longwave cooling outside the cloudy region. This produced isentropes that sloped upward with radius in the same region that absolute momentum surfaces were flat or sloping downward, thus creating symmetric instability. Although this instability typically follows rather than precedes intensification, limited numerical evidence suggests that the reestablishment of a symmetrically neutral state might influence the length of the intensification period.

2019 ◽  
Vol 58 (3) ◽  
pp. 569-583
Author(s):  
John Molinari ◽  
Michaela Rosenmayer ◽  
David Vollaro ◽  
Sarah D. Ditchek

AbstractThe NOAA G-IV aircraft routinely measures vertical aircraft acceleration from the inertial navigation system at 1 Hz. The data provide a measure of turbulence on a 250-m horizontal scale over a layer from 12.8- to 14.8-km elevation. Turbulence in this layer of tropical cyclones was largest by 35%–40% in the inner 200 km of radius and decreased monotonically outward to the 1000-km radius. Turbulence in major hurricanes exceeded that in weaker tropical cyclones. Turbulence data points were divided among three regions of the tropical cyclone: cirrus canopy; outside the cirrus canopy; and a transition zone between them. Without exception, turbulence was greater within the canopy and weaker outside the canopy. Nighttime turbulence exceeded daytime turbulence for all radii, especially within the cirrus canopy, implicating radiative forcing as a factor in turbulence generation. A case study of widespread turbulence in Hurricane Ivan (2004) showed that interactions between the hurricane outflow channel and westerlies to the north created a region of absolute vorticity of −6 × 10−5 s−1 in the upper troposphere. Outflow accelerated from the storm center into this inertially unstable region, and visible evidence for turbulence and transverse bands of cirrus appeared radially inward of the inertially unstable region. It is argued that both cloud-radiative forcing and the development of inertial instability within a narrow outflow layer were responsible for the turbulence. In contrast, a second case study (Isabel 2003) displayed strong near-core turbulence in the presence of large positive absolute vorticity and no local inertial instability. Peak turbulence occurred 100 km downwind of the eyewall convection.


2019 ◽  
Vol 76 (8) ◽  
pp. 2559-2573
Author(s):  
Hui Wang ◽  
Yuqing Wang ◽  
Jing Xu ◽  
Yihong Duan

Abstract This study examines the evolution of the warm-core structure during the secondary eyewall formation (SEF) and the subsequent eyewall replacement cycle (ERC) in a numerically simulated tropical cyclone (TC) under idealized conditions. Results show that prior to the SEF, the TC exhibited a double warm-core structure centered in the middle and upper troposphere in the eye region, and as the storm intensified with a rapid outward expansion of tangential winds, the warm core strengthened and a secondary off-center warm ring developed between 8- and 16-km heights near the outer edge of the eye. During the SEF, both the upper-level warm core and the secondary off-center warm ring rapidly strengthened. As the secondary eyewall intensified and contracted and the primary eyewall weakened and dissipated, the off-center warm ring extended inward and merged with the inner warm core to form a warm core typical of a single-eyewall TC. Results from the azimuthal-mean potential temperature budget indicate that the warming in the eye is due to subsidence and the warming above 14-km height outside the eye is largely contributed by radial warm advection in the outflow. The development of the off-center warm ring is largely due to the subsidence warming near the inner edge of the primary eyewall and in the moat area and the warming by diabatic heating in the upper part of the inner eyewall below 14-km height. Further analysis indicates that the eddy advection also played some role in the warming above 12-km height in the upper troposphere.


2008 ◽  
Vol 65 (9) ◽  
pp. 2922-2935 ◽  
Author(s):  
Maurizio Fantini ◽  
Piero Malguzzi

Abstract Idealized numerical experiments, supported by analytic considerations, are performed to determine the preferred direction of symmetric instability when water loading is considered. It is concluded that the most unstable direction is tangent to a surface of neutral buoyancy, which can be defined numerically from the water content of lifted air, and coincides with the tangent to saturated isentropes only when all condensed water is precipitated out, consistent with the thermodynamic approximations made in the definition of equivalent potential temperature. In more common situations, when part or all of the condensed water is retained in the cloud, the orientation of symmetrically unstable normal modes is much more slanted toward the horizontal, to the point that regions of the atmosphere, diagnosed as unstable from the consideration of equivalent potential temperature and vorticity, can in fact be stable.


2014 ◽  
Vol 71 (9) ◽  
pp. 3164-3179 ◽  
Author(s):  
John Molinari ◽  
Patrick Duran ◽  
David Vollaro

Abstract Dropsondes from the NOAA G-IV aircraft were used to examine the presence of low bulk Richardson numbers RB in tropical cyclones. At least one 400-m layer above z = 7.5 km exhibited RB < 1 in 96% of the sondes and RB ≤ 0.25 in 35% of the sondes. The latter represent almost certain turbulence. Sondes from major Hurricane Ivan (2004) were examined in detail. Turbulent layers fell into three broad groups. The first was found below cloud base near the edge of the central dense overcast (CDO) where relative humidity fell below 40%. Near-zero static stability existed within the turbulent layer with stability and shear maxima above it. This structure strongly resembled that seen previously from sublimation of precipitation beneath cloud base. The second type of turbulent layer was located within CDO clouds in the upper troposphere and was due almost entirely to near-zero static stability. This most likely arose as a result of cooling via longwave flux divergence below CDO top. The third type of turbulent layer existed well outside the CDO and was produced by large local vertical wind shear. The shear maxima associated with the beneath-cloud and outside-CDO turbulent layers produced a sharp transition from weak inflow below to strong outflow above. The results suggest that the CDO creates its own distinctive stability profile that strongly influences the distribution of turbulence and the transition to outflow in tropical cyclones.


2018 ◽  
Vol 75 (10) ◽  
pp. 3725-3733 ◽  
Author(s):  
Olivier M. Pauluis

The atmospheric overturning can be estimated by computing an isentropic streamfunction, defined as the net upward mass transport of all air parcels with the potential temperature less than a given threshold. Here, the streamfunctions for the equivalent potential temperature and the entropy potential temperature are compared in a numerical simulation of a hurricane. It is shown that, when condensate is not taken into account, the two streamfunctions are equivalent and can be related to one another by a coordinate transformation. When condensate content is included, the streamfunctions differ substantially in the upper troposphere because of the large amount of ice water found in some updrafts. It is also shown that using an equivalent potential temperature over ice avoids this problem and offers a more robust way to compute the atmospheric overturning when precipitation is included. While it has been recently recommended to limit the isentropic analysis to the entropy potential temperature, it is argued here that more insights can be gained by comparing a circulation averaged in multiple coordinates over limiting oneself to one specific choice.


Author(s):  
Vladimir Zeitlin

It is shown how the standard RSW can be ’augmented’ to include phase transitions of water. This chapter explains how to incorporate extra (convective) vertical fluxes in the model. By using Lagrangian conservation of equivalent potential temperature condensation of the water vapour, which is otherwise a passive tracer, is included in the model and linked to convective fluxes. Simple relaxational parameterisation of condensation permits the closure of the system, and surface evaporation can be easily included. Physical and mathematical properties of thus obtained model are explained, and illustrated on the example of wave scattering on the moisture front. The model is applied to ’moist’ baroclinic instability of jets and vortices. Condensation is shown to produce a transient increase of the growth rate. Special attention is paid to the moist instabilities of hurricane-like vortices, which are shown to enhance intensification of the hurricane, increase gravity wave emission, and generate convection-coupled waves.


2015 ◽  
Vol 15 (13) ◽  
pp. 7667-7684 ◽  
Author(s):  
Fuqing Zhang ◽  
Junhong Wei ◽  
Meng Zhang ◽  
K. P. Bowman ◽  
L. L. Pan ◽  
...  

Abstract. This study analyzes in situ airborne measurements from the 2008 Stratosphere–Troposphere Analyses of Regional Transport (START08) experiment to characterize gravity waves in the extratropical upper troposphere and lower stratosphere (ExUTLS). The focus is on the second research flight (RF02), which took place on 21–22 April 2008. This was the first airborne mission dedicated to probing gravity waves associated with strong upper-tropospheric jet–front systems. Based on spectral and wavelet analyses of the in situ observations, along with a diagnosis of the polarization relationships, clear signals of mesoscale variations with wavelengths ~ 50–500 km are found in almost every segment of the 8 h flight, which took place mostly in the lower stratosphere. The aircraft sampled a wide range of background conditions including the region near the jet core, the jet exit and over the Rocky Mountains with clear evidence of vertically propagating gravity waves of along-track wavelength between 100 and 120 km. The power spectra of the horizontal velocity components and potential temperature for the scale approximately between ~ 8 and ~ 256 km display an approximate −5/3 power law in agreement with past studies on aircraft measurements, while the fluctuations roll over to a −3 power law for the scale approximately between ~ 0.5 and ~ 8 km (except when this part of the spectrum is activated, as recorded clearly by one of the flight segments). However, at least part of the high-frequency signals with sampled periods of ~ 20–~ 60 s and wavelengths of ~ 5–~ 15 km might be due to intrinsic observational errors in the aircraft measurements, even though the possibilities that these fluctuations may be due to other physical phenomena (e.g., nonlinear dynamics, shear instability and/or turbulence) cannot be completely ruled out.


2019 ◽  
Vol 100 (5) ◽  
pp. 873-895 ◽  
Author(s):  
Carl M. Thomas ◽  
David M. Schultz

AbstractFronts can be computed from gridded datasets such as numerical model output and reanalyses, resulting in automated surface frontal charts and climatologies. Defining automated fronts requires quantities (e.g., potential temperature, equivalent potential temperature, wind shifts) and kinematic functions (e.g., gradient, thermal front parameter, and frontogenesis). Which are the most appropriate to use in different applications remains an open question. This question is investigated using two quantities (potential temperature and equivalent potential temperature) and three functions (magnitude of the horizontal gradient, thermal front parameter, and frontogenesis) from both the context of real-time surface analysis and climatologies from 38 years of reanalyses. The strengths of potential temperature to identify fronts are that it represents the thermal gradients and its direct association with the kinematics and dynamics of fronts. Although climatologies using potential temperature show features associated with extratropical cyclones in the storm tracks, climatologies using equivalent potential temperature include moisture gradients within air masses, most notably at low latitudes that are unrelated to the traditional definition of a front, but may be representative of a broader definition of an airmass boundary. These results help to explain previously published frontal climatologies featuring maxima of fronts in the subtropics and tropics. The best function depends upon the purpose of the analysis, but Petterssen frontogenesis is attractive, both for real-time analysis and long-term climatologies, in part because of its link to the kinematics and dynamics of fronts. Finally, this study challenges the conventional definition of a front as an airmass boundary and suggests that a new, dynamically based definition would be useful for some applications.


Sign in / Sign up

Export Citation Format

Share Document