Impact of Convectively Generated Low-Frequency Gravity Waves on Evolution of Mesoscale Convective Systems

2020 ◽  
Vol 77 (10) ◽  
pp. 3441-3460
Author(s):  
Rebecca D. Adams-Selin

AbstractIdealized numerical simulations of mesoscale convective systems (MCSs) over a range of instabilities and shears were conducted to examine low-frequency gravity waves generated during initial and mature stages of convection. In all simulations, at initial updraft development a first-order wave was generated by heating extending through the depth of the troposphere. Additional first-order wave modes were generated each time the convective updraft reintensified. Each of these waves stabilized the environment in advance of the system. As precipitation descended below cloud base, and as a stratiform precipitation region developed, second-order wave modes were generated by cooling extending from the midlevels to the surface. These waves destabilized the environment ahead of the system but weakened the 0–5 km shear. Third-order wave modes could be generated by midlevel cooling caused by rear inflow intensification; these wave modes cooled the midlevels destabilizing the environment. The developing stage of each MCS was characterized by a cyclical process: developing updraft, generation of n = 1 wave, increase in precipitation, generation of n = 2 wave, and subsequent environmental destabilization reinvigorating the updraft. After rearward expansion of the stratiform region, the MCSs entered their mature stage and the method of updraft reinvigoration shifted to absorbing discrete convective cells produced in advance of each system. Higher-order wave modes destabilized the environment, making it more favorable to development of these cells and maintenance of the MCS. As initial simulation shear or instability increased, the transition from cyclical wave/updraft development to discrete cell/updraft development occurred more quickly.

1995 ◽  
Vol 100 (D8) ◽  
pp. 16341 ◽  
Author(s):  
Monte G. Bateman ◽  
W. David Rust ◽  
Bradley F. Smull ◽  
Thomas C. Marshall

2017 ◽  
Vol 74 (12) ◽  
pp. 4213-4228 ◽  
Author(s):  
Changhai Liu ◽  
Mitchell W. Moncrieff

Abstract Numerical simulations are performed to investigate organized convection observed in the Asian summer monsoon and documented as a category of mesoscale convective systems (MCSs) over the U.S. continent during the warm season. In an idealized low-inhibition and unidirectional shear environment of the mei-yu moisture front, the structure of the simulated organized convection is distinct from that occurring in the classical quasi-two-dimensional, shear-perpendicular, and trailing stratiform (TS) MCS. Consisting of four airflow branches, a three-dimensional, eastward-propagating, downshear-tilted, shear-parallel MCS builds upshear by initiating new convection at its upstream end. The weak cold pool in the low-inhibition environment negligibly affects convection initiation, whereas convectively generated gravity waves are vital. Upstream-propagating gravity waves form a saturated or near-saturated moist tongue, and downstream-propagating waves control the initiation and growth of convection within a preexisting cloud layer. A sensitivity experiment wherein the weak cold pool is removed entirely intensifies the MCS and its interaction with the environment. The horizontal scale, rainfall rate, convective momentum transport, and transverse circulation are about double the respective value in the control simulation. The positive sign of the convective momentum transport contrasts with the negative sign for an eastward-propagating TS MCS. The structure of the simulated convective systems resembles shear-parallel organization in the intertropical convergence zone (ITCZ).


2015 ◽  
Vol 72 (11) ◽  
pp. 4297-4318 ◽  
Author(s):  
Todd P. Lane ◽  
Mitchell W. Moncrieff

Abstract Dynamical models of organized mesoscale convective systems have identified the important features that help maintain their overarching structure and longevity. The standard model is the trailing stratiform archetype, featuring a front-to-rear ascending circulation, a mesoscale downdraft circulation, and a cold pool/density current that affects the propagation speed and the maintenance of the system. However, this model does not represent all types of mesoscale convective systems, especially in moist environments where the evaporation-driven cold pools are weak and the convective inhibition is small. Moreover, questions remain about the role of gravity waves in creating and maintaining organized systems and affecting their propagation speed. This study presents simulations and dynamical models of self-organizing convection in a moist, low–convective inhibition environment and examines the long-lived convective regimes that emerge spontaneously. This paper, which is Part I of this study, specifically examines the structure, kinematics, and maintenance of long-lived, upshear-propagating convective systems that differ in important respects from the standard model of long-lived convective systems. Linear theory demonstrates the role of ducted gravity waves in maintaining the long-lived, upshear-propagating systems. A steady nonlinear model approximates the dynamics of upshear-propagating density currents that are key to the maintenance of the mesoscale convective system.


2021 ◽  
Vol 39 (2) ◽  
pp. 321-326
Author(s):  
Karol Martynski ◽  
Jan Blecki ◽  
Roman Wronowski ◽  
Andrzej Kulak ◽  
Janusz Mlynarczyk ◽  
...  

Abstract. Mesoscale convective systems (MCSs) are especially visible in the summertime when there is an advection of warm maritime air from the west. Advection of air masses is enriched by water vapour, the source of which can be found over the Mediterranean Sea. In propitious atmospheric conditions, and thus significant convection, atmospheric instability or strong vertical thermal gradient leads to the development of strong thunderstorm systems. In this paper, we discuss one case of MCSs, which generated a significant amount of +CG (cloud-to-ground), −CG and intracloud (IC) discharges. We have focused on the ELF (extremely low frequency; < 1 kHz) electromagnetic field measurements, since they allow us to compute the charge moments of atmospheric discharges. Identification of the MCSs is a complex process, due to many variables which have to be taken into account. For our research, we took into consideration a few tools, such as cloud reflectivity, atmospheric soundings and data provided by PERUN (Polish system of the discharge localisation system), which operates in a very high frequency (VHF) range (113.5–114.5 MHz). Combining the above-described measurement systems and tools, we identified a MCS which occurred in Poland on 23 July 2009. Furthermore, it fulfilled our requirements since the thunderstorm crossed the path of the DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) overpass.


2016 ◽  
Vol 29 (9) ◽  
pp. 3353-3371 ◽  
Author(s):  
Dominique Bouniol ◽  
Rémy Roca ◽  
Thomas Fiolleau ◽  
D. Emmanuel Poan

Abstract Mesoscale convective systems (MCSs) are important drivers of the atmospheric large-scale circulation through their associated diabatic heating profile. Taking advantage of recent tracking techniques, this study investigates the evolution of macrophysical, microphysical, and radiative properties over the MCS life cycle by merging geostationary and polar-orbiting satellite data. These observations are performed in three major convective areas: continental West Africa, the adjacent Atlantic Ocean, and the open Indian Ocean. MCS properties are also investigated according to internal subregions (convective, stratiform, and nonprecipitating anvil). Continental MCSs show a specific life cycle, with more intense convection at the beginning. Larger and denser hydrometeors are thus found at higher altitudes, as well as up to the cirriform subregion. Oceanic MCSs have more constant reflectivity values, suggesting a less intense convective updraft, but more persistent intensity. A layer of small crystals is found in all subregions, but with a depth that varies according to the MCS subregion and life cycle. Radiative properties are also examined. It appears that the evolution of large and dense hydrometeors tends to control the evolution of the cloud albedo and the outgoing longwave radiation. The impact of dense hydrometeors, detrained from the convective towers, is also seen in the radiative heating profiles, in particular in the shortwave domain. A dipole of cooling near the cloud top and heating near the cloud base is found in the longwave; this cooling intensifies near the end of the life cycle.


Author(s):  
Victor C. Mayta ◽  
Ángel F. Adames

AbstractThe dynamical and thermodynamical features of Amazonian 2-day westward-propagating inertia-gravity waves (WIG) are examined. On the basis of a linear regression analysis of satellite brightness temperature and data from the 2014-15 Observations and Modeling of the Green Ocean Amazon (GoAmazon) field campaign, it is shown that Amazonian WIG waves exhibit structure and propagation characteristics consistent with the n=1 WIG waves from shallow water theory. These WIG waves exhibit a pronounced seasonality, with peak activity occurring from March to May and a minimum occurring from June to September. Evidence is shown that mesoscale convective systems over the Amazon are frequently organized in 2-day WIG waves. Results suggest that many of the Amazonian WIG waves come from pre-existing 2-day waves over the Atlantic, which slow down when coupled with the deeper, more intense convection over tropical South America. In contrast to WIG waves that occur over the ocean, Amazonian 2-day WIG waves exhibit a pronounced signature in surface temperature, moisture, and heat fluxes.


2009 ◽  
Vol 137 (4) ◽  
pp. 1186-1205 ◽  
Author(s):  
Joseph A. Grim ◽  
Greg M. McFarquhar ◽  
Robert M. Rauber ◽  
Andrea M. Smith ◽  
Brian F. Jewett

Abstract This study employed a nondynamic microphysical column model to evaluate the degree to which the microphysical processes of sublimation, melting, and evaporation alone can explain the evolution of the relative humidity (RH) and latent cooling profiles within the trailing stratiform region of mesoscale convective systems observed during the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX). Simulations revealed that observations of a sharp change in the profile of RH, from saturated air with respect to ice above the melting layer to subsaturated air with respect to water below, developed in response to the rapid increase in hydrometeor fall speeds from 1–2 m s−1 for ice to 2–11 m s−1 for rain. However, at certain times and locations, such as the first spiral descent on 29 June 2003 within the notch of lower reflectivity, the air may remain subsaturated for temperatures (T) &lt; 0°C. Sufficiently strong downdrafts above the melting level, such as the 1–3 m s−1 downdrafts observed in the notch of lower reflectivity on 29 June, could enable this state of sustained subsaturation. Sensitivity tests, where the hydrometeor size distributions and upstream RH profiles were varied within the range of BAMEX observations, revealed that the sharp contrast in the RH field across the melting layer always developed. The simulations also revealed that latent cooling from sublimation and melting resulted in the strongest cooling at altitudes within and above the melting layer for locations where hydrometeors did not reach the ground, such as within the rear anvil region, and where sustained subsaturated air is present for T &lt; 0°C, such as is observed within downdrafts. Within the enhanced stratiform rain region, the air is typically at or near saturation for T &lt; 0°C, whereas it is typically subsaturated for T &gt; 0°C; thus, evaporation and melting result in the primary cooling in this region. The implications of these results for the descent of the rear inflow jet across the trailing stratiform region are discussed.


2007 ◽  
Vol 135 (10) ◽  
pp. 3303-3324 ◽  
Author(s):  
Scott M. Steiger ◽  
Richard E. Orville ◽  
Lawrence D. Carey

Abstract Total lightning data from the Lightning Detection and Ranging (LDAR II) research network in addition to cloud-to-ground flash data from the National Lightning Detection Network (NLDN) and data from the Dallas–Fort Worth, Texas, Weather Surveillance Radar-1988 Doppler (WSR-88D) station (KFWS) were examined from individual cells within mesoscale convective systems that crossed the Dallas–Fort Worth region on 13 October 2001, 27 May 2002, and 16 June 2002. LDAR II source density contours were comma shaped, in association with severe wind events within mesoscale convective systems (MCSs) on 13 October 2001 and 27 May 2002. This signature is similar to the radar reflectivity bow echo. The source density comma shape was apparent 15 min prior to a severe wind report and lasted more than 20 min during the 13 October storm. Consistent relationships between severe straight-line winds, radar, and lightning storm cell characteristics (e.g., lightning heights) were not found for cells within MCSs as was the case for severe weather in supercells in Part I of this study. Cell interactions within MCSs are believed to weaken these relationships as reflectivity and lightning from nearby storms contaminate the cells of interest. Another hypothesis for these weak relations is that system, not individual cell, processes are responsible for severe straight-line winds at the surface. Analysis of the total lightning structure of the 13 October 2001 MCS showed downward-sloping source density contours behind the main convective line into the stratiform region. This further supports a charge advection mechanism in developing the stratiform charge structure. Bimodal vertical source density distributions were observed within MCS convection close to the center of the LDAR II network, while the lower mode was not detected at increasing range.


2008 ◽  
Vol 136 (11) ◽  
pp. 4242-4271 ◽  
Author(s):  
James Correia ◽  
Raymond W. Arritt

Abstract Dropsonde observations from the Bow Echo and Mesoscale Convective Vortex Experiment (BAMEX) are used to document the spatiotemporal variability of temperature, moisture, and wind within mesoscale convective systems (MCSs). Onion-type sounding structures are found throughout the stratiform region of MCSs, but the temperature and moisture variability is large. Composite soundings were constructed and statistics of thermodynamic variability were generated within each subregion of the MCS. The calculated air vertical velocity helped identify subsaturated downdrafts. It was found that lapse rates within the cold pool varied markedly throughout the MCS. Layered wet-bulb potential temperature profiles seem to indicate that air within the lowest several kilometers comes from a variety of source regions. It was also found that lapse-rate transitions across the 0°C level were more common than isothermal, melting layers. The authors discuss the implications these findings have and how they can be used to validate future high-resolution numerical simulations of MCSs.


2013 ◽  
Vol 14 (5) ◽  
pp. 1672-1682 ◽  
Author(s):  
Youcun Qi ◽  
Jian Zhang ◽  
Qing Cao ◽  
Yang Hong ◽  
Xiao-Ming Hu

Abstract Mesoscale convective systems (MCSs) contain both regions of convective and stratiform precipitation, and a bright band (BB) is often found in the stratiform region. Inflated reflectivity intensities in the BB often cause positive biases in radar quantitative precipitation estimation (QPE). A vertical profile of reflectivity (VPR) correction is necessary to reduce such biases. However, existing VPR correction methods for ground-based radars often perform poorly for MCSs owing to their coarse resolution and poor coverage in the vertical direction, especially at far ranges. Spaceborne radars such as the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), on the other hand, can provide high resolution VPRs. The current study explores a new approach of incorporating the TRMM VPRs into the VPR correction for the Weather Surveillance Radar-1988 Doppler (WSR-88D) radar QPE. High-resolution VPRs derived from the Ku-band TRMM PR data are converted into equivalent S-band VPRs using an empirical technique. The equivalent S-band TRMM VPRs are resampled according to the WSR-88D beam resolution, and the resampled (apparent) VPRs are then used to correct for BB effects in the WSR-88D QPE when the ground radar VPR cannot accurately capture the BB bottom. The new scheme was tested on six MCSs from different regions in the United States and it was shown to provide effective mitigation of the radar QPE errors due to BB contamination.


Sign in / Sign up

Export Citation Format

Share Document