scholarly journals Self-Organization of Atmospheric Macroturbulence into Critical States of Weak Nonlinear Eddy–Eddy Interactions

2006 ◽  
Vol 63 (6) ◽  
pp. 1569-1586 ◽  
Author(s):  
Tapio Schneider ◽  
Christopher C. Walker

Abstract It is generally held that atmospheric macroturbulence can be strongly nonlinear. Yet weakly nonlinear models successfully account for scales and structures of baroclinic eddies in Earth's atmosphere. Here a theory and simulations with an idealized GCM are presented that suggest weakly nonlinear models are so successful because atmospheric macroturbulence organizes itself into critical states of weak nonlinear eddy–eddy interactions. By modifying the thermal structure of the extratropical atmosphere such that its supercriticality remains limited, macroturbulence inhibits nonlinear eddy–eddy interactions and the concomitant inverse energy cascade from the length scales of baroclinic instability to larger scales. For small meridional surface temperature gradients, the extratropical thermal stratification and tropopause height are set by radiation and convection, and the supercriticality is less than one; for sufficiently large meridional surface temperature gradients, the extratropical thermal stratification and tropopause height are modified by baroclinic eddies such that the supercriticality does not significantly exceed one. In either case, the scale of the energy-containing eddies is similar to the scale of the linearly most unstable baroclinic waves, and eddy kinetic and available potential energies are equipartitioned. The theory and simulations point to fundamental constraints on the thermal structures and global circulations of the atmospheres of Earth and other planets, for example, by providing limits on the tropopause height and estimates for eddy scales, eddy energies, and jet separation scales.

2009 ◽  
Vol 66 (2) ◽  
pp. 450-467 ◽  
Author(s):  
Ross Tulloch ◽  
K. Shafer Smith

Abstract The horizontal wavenumber spectra of wind and temperature near the tropopause have a steep −3 slope at synoptic scales and a shallower −5/3 slope at mesoscales, with a transition between the two regimes at a wavelength of about 450 km. Here it is demonstrated that a quasigeostrophic model driven by baroclinic instability exhibits such a transition near its upper boundary (analogous to the tropopause) when surface temperature advection at that boundary is properly resolved and forced. To accurately represent surface advection at the upper and lower boundaries, the vertical structure of the model streamfunction is decomposed into four parts, representing the interior flow with the first two neutral modes, and each surface with its Green’s function solution, resulting in a system with four prognostic equations. Mean temperature gradients are applied at each surface, and a mean potential vorticity gradient consisting both of β and vertical shear is applied in the interior. The system exhibits three fundamental types of baroclinic instability: interactions between the upper and lower surfaces (Eady type), interactions between one surface and the interior (Charney type), and interactions between the barotropic and baroclinic interior modes (Phillips type). The turbulent steady states that result from each of these instabilities are distinct, and those of the former two types yield shallow kinetic energy spectra at small scales along those boundaries where mean temperature gradients are present. When both mean interior and surface gradients are present, the surface spectrum reflects a superposition of the interior-dominated −3 slope cascade at large scales, and the surface-dominated −5/3 slope cascade at small scales. The transition wavenumber depends linearly on the ratio of the interior potential vorticity gradient to the surface temperature gradient, and scales with the inverse of the deformation scale when β = 0.


2021 ◽  
Vol 7 (5) ◽  
pp. eabe2348
Author(s):  
Karen Lythgoe ◽  
Muzli Muzli ◽  
Kyle Bradley ◽  
Teng Wang ◽  
Andri Dian Nugraha ◽  
...  

Temperature plays a critical role in defining the seismogenic zone, the area of the crust where earthquakes most commonly occur; however, thermal controls on fault ruptures are rarely observed directly. We used a rapidly deployed seismic array to monitor an unusual earthquake cascade in 2018 at Lombok, Indonesia, during which two magnitude 6.9 earthquakes with surprisingly different rupture characteristics nucleated beneath an active arc volcano. The thermal imprint of the volcano on the fault elevated the base of the seismogenic zone beneath the volcanic edifice by 8 km, while also reducing its width. This thermal “squeezing” directly controlled the location, directivity, dynamics, and magnitude of the earthquake cascade. Earthquake segmentation due to thermal structure can occur where strong temperature gradients exist on a fault.


2021 ◽  
Author(s):  
Frida Hoem ◽  
Suning Hou ◽  
Matthew Huber ◽  
Francesca Sangiorgi ◽  
Henk Brinkhuis ◽  
...  

<p>The opening of the Tasmanian Gateway during the Eocene and further deepening in the Oligocene is hypothesized to have reorganized ocean currents, preconditioning the Antarctic Circumpolar Current (ACC) to evolve into place. However, fundamental questions still remain on the past Southern Ocean structure. We here present reconstructions of latitudinal temperature gradients and the position of ocean frontal systems in the Australian sector of the Southern Ocean during the Oligocene. We generated new sea surface temperature (SST) and dinoflagellate cyst data from the West Tasman margin, ODP Site 1168. We compare these with other records around the Tasmanian Gateway, and with climate model simulations to analyze the paleoceanographic evolution during the Oligocene. The novel organic biomarker TEX<sub>86</sub>- SSTs from ODP Site 1168, range between 19.6 – 27.9°C (± 5.2°C, using the linear calibration by Kim et al., 2010), supported by temperate and open ocean dinoflagellate cyst assemblages. The data compilation, including existing TEX<sub>86</sub>-based SSTs from ODP Site 1172 in the Southwest Pacific Ocean, DSDP Site 274 offshore Cape Adare, DSDP Site 269 and IODP Site U1356 offshore the Wilkes Land Margin and terrestrial temperature proxy records from the Cape Roberts Project (CRP) on the Ross Sea continental shelf, show synchronous variability in temperature evolution between Antarctic and Australian sectors of the Southern Ocean. The SST gradients are around 10°C latitudinally across the Tasmanian Gateway throughout the early Oligocene, and increasing in the Late Oligocene. This increase can be explained by polar amplification/cooling, tectonic drift, strengthening of atmospheric currents and ocean currents. We suggest that the progressive cooling of Antarctica and the absence of mid-latitude cooling strengthened the westerly winds, which in turn could drive an intensification of the ACC and strengthening of Southern Ocean frontal systems.</p>


2004 ◽  
Vol 109 (C8) ◽  
pp. n/a-n/a ◽  
Author(s):  
B. Ward ◽  
R. Wanninkhof ◽  
W. R. McGillis ◽  
A. T. Jessup ◽  
M. D. DeGrandpre ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1051
Author(s):  
Kun Liu ◽  
Xi Chen ◽  
Kangping Du ◽  
Yu Wang ◽  
Jinguang Du ◽  
...  

The purpose of this paper is to study the thermal shock resistance and failure mechanism of La2Ce2O7/8YSZ double-ceramic-layer thermal barrier coatings (LC/8YSZ DCL TBCs) under extreme temperature gradients. At high surface temperatures, thermal shock and infrared temperature measuring modules were used to determine the thermal cycling life and insulation temperature of LC/8YSZ DCL TBCs under extreme temperature gradients by an oxygen–acetylene gas flame testing machine. A viscoelastic model was used to obtain the stress and strain law of solid phase sintering of a coating system using the finite element method. Results and Conclusion: (1) Thermal cycling life was affected by the surface temperature of LC/8YSZ DCL TBCs and decreased sharply with the increase of surface temperature. (2) The LC ceramic surface of the failure coating was sintered, and the higher the temperature, the faster the sintering process. (3) Accelerated life test results showed that high temperature thermal cycling life is not only related to thermal fatigue of ceramic layer, but is also related to the sintering degree of the coating. (4) Although the high temperature thermal stress had great influence on the coating, great sintering stress was produced with sintering of the LC ceramic layer, which is the main cause of LC/8YSZ DCL TBC failure. The above results indicate that for new TBC ceramic materials, especially those for engines above class F, their sinterability should be fully considered. Sintering affects the thermal shock properties at high temperature. Our research results can provide reference for material selection and high temperature performance research.


1995 ◽  
Vol 117 (1) ◽  
pp. 75-81 ◽  
Author(s):  
A. K. Mallik ◽  
G. P. Peterson

An experimental investigation of vapor deposited micro heat pipe arrays was conducted using arrays of 34 and 66 micro heat pipes occupying 0.75 and 1.45 percent of the cross-sectional area, respectively. The performance of wafers containing the arrays was compared with that of a plain silicon wafer. All of the wafers had 8 × 8 mm thermofoil heaters located on the bottom surface to simulate the active devices in an actual application. The temperature distributions across the wafers were obtained using a Hughes Probeye TVS Infrared Thermal Imaging System and a standard VHS video recorder. For wafers containing arrays of 34 vapor deposited micro heat pipes, the steady-state experimental data indicated a reduction in the maximum surface temperature and temperature gradients of 24.4 and 27.4 percent, respectively, coupled with an improvement in the effective thermal conductivity of 41.7 percent. For wafers containing arrays of 66 vapor deposited micro heat pipes, the corresponding reductions in the surface temperature and temperature gradients were 29.0 and 41.7 percent, respectively, and the effective thermal conductivity increased 47.1 percent, for input heat fluxes of 4.70 W/cm2. The experimental results were compared with the results of a previously developed numerical model, which was shown to predict the temperature distribution with a high degree of accuracy, for wafers both with and without the heat pipe arrays.


Sign in / Sign up

Export Citation Format

Share Document