scholarly journals Dynamics of Eddy-Driven Low-Frequency Dipole Modes. Part II: Free Mode Characteristics of NAO and Diagnostic Study

2007 ◽  
Vol 64 (1) ◽  
pp. 29-51 ◽  
Author(s):  
Dehai Luo ◽  
Tingting Gong ◽  
Anthony R. Lupo

Abstract Through calculating the scatter diagrams of the streamfunction (ψP or ψT) versus potential vorticity (PV) (qP or qT), where ψP and ψT are the planetary-scale streamfunction and total streamfunction, respectively, and using a weakly nonlinear NAO model proposed in Part I of this paper, it is suggested that negative- and positive-phase NAO events may approximately correspond to free modes even though driven by synoptic-scale eddies. In a planetary-scale field, the qP(ψP) scatter diagram of an NAO event exhibits a linear multivalued functional relationship in a narrow region for the negative phase, but exhibits a linear single-valued functional relationship during the positive phase. It was also found that there is no steepening of the slope of the main straight line in the qP(ψP) scatter diagrams for two phases of the NAO event. Instead, the slope of the straight line in the scatterplots is time independent throughout the life cycle of the NAO event. However, when synoptic-scale eddies are included in the streamfunction field, the qT(ψT) scatter diagram of the negative-phase NAO event shows a trend toward steepening during the intensification phase, and this tendency reverses during the decay phase. During the positive NAO phase the slope of the qt(ψT) scatter diagram shoals during the intensification phase and then steepens during the decay phase. Thus, it appears that the steepening and shoaling of the scatter diagrams of the streamfunction versus PV for the negative- and positive-phase NAO events are attributed to the effect of synoptic-scale eddies that force NAO events to form. Diagnostic studies using both composite and unfiltered fields of observed NAO events are presented to confirm these conclusions.

2007 ◽  
Vol 64 (1) ◽  
pp. 3-28 ◽  
Author(s):  
Dehai Luo ◽  
Anthony R. Lupo ◽  
Han Wan

Abstract A simple theoretical model is proposed to clarify how synoptic-scale waves drive the life cycle of the North Atlantic Oscillation (NAO) with a period of nearly two weeks. This model is able to elucidate what determines the phase of the NAO and an analytical solution is presented to indicate a high similarity between the dynamical processes of the NAO and zonal index, which is not derived analytically in previous theoretical studies. It is suggested theoretically that the NAO is indeed a nonlinear initial-value problem, which is forced by both preexisting planetary-scale and synoptic-scale waves. The eddy forcing arising from the preexisting synoptic-scale waves is shown to be crucial for the growth and decay of the NAO, but the preexisting low-over-high (high-over-low) dipole planetary-scale wave must be required to match the preexisting positive-over-negative (negative-over-positive) dipole eddy forcing so as to excite a positive (negative) phase NAO event. The positive and negative feedbacks of the preexisting dipole eddy forcing depending upon the background westerly wind seem to dominate the life cycle of the NAO and its life period. An important finding in the theoretical model is that negative-phase NAO events could be excited repeatedly after the first event has decayed, but for the positive phase downstream isolated dipole blocks could be produced after the first event has decayed. This is supported by observed cases of the NAO events presented in this paper. In addition, a statistical study of the relationship between the phase of the NAO and blocking activity over Europe in terms of the seasonal mean NAO index shows that blocking events over Europe are more frequent and long-lived for strong positive-phase NAO years, indicating that the positive-phase NAO favors the occurrence of European blocking events.


2016 ◽  
Vol 73 (3) ◽  
pp. 1187-1203 ◽  
Author(s):  
Joanna Slawinska ◽  
Olivier Pauluis ◽  
Andrew J. Majda ◽  
Wojciech W. Grabowski

Abstract A new approach for analyzing multiscale properties of the atmospheric flow is proposed in this study. For that, the recently introduced isentropic streamfunctions are employed here for scale decomposition with Haar wavelets. This method is applied subsequently to a cloud-resolving simulation of a planetary Walker cell characterized by pronounced multiscale flow. The resulting set of isentropic streamfunctions—obtained at the convective, meso-, synoptic, and planetary scales—capture many important features of the across-scale interactions within an idealized Walker circulation. The convective scale is associated with the shallow, congestus, and deep clouds, which jointly dominate the upward mass flux in the lower troposphere. The synoptic and planetary scales play important roles in extending mass transport to the upper troposphere, where the corresponding streamfunctions mainly capture the first baroclinic mode associated with large-scale overturning circulation. The intermediate-scale features of the flow, such as anvil clouds associated with organized convective systems, are extracted with the mesoscale and synoptic-scale isentropic streamfunctions. Multiscale isentropic streamfunctions are also used to extract salient mechanisms that underlie the low-frequency variability of the Walker cell. In particular, the lag of a few days of the planetary scale behind the convective scale indicates the importance of the convective scale in moistening the atmosphere and strengthening the planetary-scale overturning circulation. Furthermore, the mesoscale and synoptic scale lags behind the planetary scale reflect the strong dependence of convective organization on the background shear.


2015 ◽  
Vol 73 (1) ◽  
pp. 371-392 ◽  
Author(s):  
Qiang Deng ◽  
Boualem Khouider ◽  
Andrew J. Majda ◽  
R. S. Ajayamohan

Abstract It is widely recognized that stratiform heating contributes significantly to tropical rainfall and to the dynamics of tropical convective systems by inducing a front-to-rear tilt in the heating profile. Precipitating stratiform anvils that form from deep convection play a central role in the dynamics of tropical mesoscale convective systems. The wide spreading of downdrafts that are induced by the evaporation of stratiform rain and originate from in the lower troposphere strengthens the recirculation of subsiding air in the neighborhood of the convection center and triggers cold pools and gravity currents in the boundary layer, leading to further lifting. Here, aquaplanet simulations with a warm pool–like surface forcing, based on a coarse-resolution GCM of approximately 170-km grid mesh, coupled with a stochastic multicloud parameterization, are used to demonstrate the importance of stratiform heating for the organization of convection on planetary and intraseasonal scales. When the model parameters, which control the heating fraction and decay time scale of the stratiform clouds, are set to produce higher stratiform heating, the model produces low-frequency and planetary-scale MJO-like wave disturbances, while parameters associated with lower-to-moderate stratiform heating yield mainly synoptic-scale convectively coupled Kelvin-like waves. Furthermore, it is shown that, when the effect of stratiform downdrafts is reduced in the model, the MJO-scale organization is weakened, and a transition to synoptic-scale organization appears despite the use of larger stratiform heating parameters. Rooted in the stratiform instability, it is conjectured here that the strength and extent of stratiform downdrafts are key contributors to the scale selection of convective organizations, perhaps with mechanisms that are, in essence, similar to those of mesoscale convective systems.


2010 ◽  
Vol 28 (3) ◽  
pp. 795-805 ◽  
Author(s):  
J. Liu ◽  
B. Zhao ◽  
L. Liu

Abstract. Although positive and negative signatures of ionospheric storms have been reported many times, global characteristics such as the time of occurrence, time delay and duration as well as their relations to the intensity of the ionospheric storms have not received enough attention. The 10 years of global ionosphere maps (GIMs) of total electron content (TEC) retrieved at Jet Propulsion Laboratory (JPL) were used to conduct a statistical study of the time delay of the ionospheric responses to geomagnetic disturbances. Our results show that the time delays between geomagnetic disturbances and TEC responses depend on season, magnetic local time and magnetic latitude. In the summer hemisphere at mid- and high latitudes, the negative storm effects can propagate to the low latitudes at post-midnight to the morning sector with a time delay of 4–7 h. As the earth rotates to the sunlight, negative phase retreats to higher latitudes and starts to extend to the lower latitude toward midnight sector. In the winter hemisphere during the daytime and after sunset at mid- and low latitudes, the negative phase appearance time is delayed from 1–10 h depending on the local time, latitude and storm intensity compared to the same area in the summer hemisphere. The quick response of positive phase can be observed at the auroral area in the night-side of the winter hemisphere. At the low latitudes during the dawn-noon sector, the ionospheric negative phase responses quickly with time delays of 5–7 h in both equinoctial and solsticial months. Our results also manifest that there is a positive correlation between the intensity of geomagnetic disturbances and the time duration of both the positive phase and negative phase. The durations of both negative phase and positive phase have clear latitudinal, seasonal and magnetic local time (MLT) dependence. In the winter hemisphere, long durations for the positive phase are 8–11 h and 12–14 h during the daytime at middle and high latitudes for 20≤Ap<40 and Ap≥40.


2021 ◽  
Author(s):  
Daria Sobaeva ◽  
Yulia Zyulyaeva ◽  
Sergey Gulev

&lt;p&gt;Strong quasi-decadal oscillations of the stratospheric polar vortex (SPV) intensity are in phase with the Pacific decadal oscillation (PDO). A stronger SPV is observed during the positive phase of the PDO, and during the negative phase, the intensity of the SPV is below the mean climate values. The SPV intensity anomalies, formed by the planetary waves and zonal mean flow interaction, lead to the weakening/intensification of the vortex.&lt;/p&gt;&lt;p&gt;This research aimed to obtain the differences in the characteristics and the spatial propagation pattern of the planetary waves in the middle troposphere and lower stratosphere during different PDO phases. We analyzed composite periods of years when the PDO index has extremely high and low values. Two periods were constructed for both positive and negative phases, the first consisting of years with El-Nino/La-Nina events and the second without prominent sea surface temperature anomalies in the tropics.&amp;#160;&lt;/p&gt;&lt;p&gt;During the wintertime in the Northern Hemisphere (December-February), wave 2 with two ridges (Siberian and North American Highs) and two troughs (Icelandic and Aleutian Lows) dominates in the middle troposphere, along with wave 1 dominating in the lower stratosphere. In the middle troposphere, at the positive phase &amp;#8203;&amp;#8203;of the PDO, the amplitude of wave 2 is higher than in years with negative values of the PDO index. The differences in the Aleutian Low and the North American High intensity between the two phases are significant at the 97.5% level. In the lower stratosphere, the wave amplitude is lower at the negative phase &amp;#8203;&amp;#8203;of the PDO, but we can also talk about a slight shift of the wave phase to the east. The regions of the heavy rains in the tropics during El-Nino events are the planetary waves source. They propagate from low to high latitudes, which results in modifying the characteristics and locations of the intensification of the stationary planetary waves in mid-latitudes.&lt;/p&gt;


2007 ◽  
Vol 64 (9) ◽  
pp. 3232-3248 ◽  
Author(s):  
Dehai Luo ◽  
Tingting Gong ◽  
Yina Diao

Abstract In this paper, the north–south variability of westerly jet anomalies during the two phases of the North Atlantic Oscillation (NAO) is examined in a theoretical model. It is found that the north–south variability of the zonal mean westerly anomaly results from the interaction between the eddy-driven anomalous stationary waves with a dipole meridional structure (NAO anomalies) and topographically induced climatological stationary waves with a monopole structure, which is dependent upon the phase of the NAO. The westerly jet anomaly tends to shift northward during the positive NAO phase but southward during the negative phase. Synoptic-scale eddies tend to maintain westerly jet anomalies through the excitation of NAO anomalies, but the climatological stationary wave and its position relative to the eddy-driven anomalous stationary wave appear to dominate the north–south shift of westerly jet anomalies. On the other hand, it is shown that when the climatological stationary wave ridge is located downstream of the eddy-driven anomalous stationary wave, the storm track modulated by the NAO pattern splits into two branches for the negative phase, in which the northern branch is generally stronger than the southern one. However, the southern one can be dominant as the relative position between anomalous and climatological stationary waves is within a moderate range. The storm track for the positive phase tends to drift northeastward when there is a phase difference between the NAO anomaly and climatological stationary wave ridge downstream. Thus, it appears that the relationship between the NAO jets and storm tracks can be clearly seen from the present theoretical model.


2011 ◽  
Vol 68 (3) ◽  
pp. 577-601 ◽  
Author(s):  
Dehai Luo ◽  
Yina Diao ◽  
Steven B. Feldstein

Abstract The winter-mean North Atlantic Oscillation (NAO) index has been mostly positive since the 1980s, with a linear upward trend during the period from 1978 to 1990 (P1) and a linear downward trend during the period from 1991 to 2009 (P2). Further calculations show that the Atlantic storm-track eddy activity is more intense during P2 than during P1, which is statistically significant at the 90% confidence level for a t test. This study proposes a hypothesis that the change in the trend of the positive NAO index from P1 to P2 may be associated with the marked intensification of the Atlantic storm track during P2. A generalized nonlinear NAO model is used to explain the observed trend of the positive NAO index within P2. It is found that even when the Atlantic storm-track eddies are less intense, a positive-phase NAO event can form under the eddy forcing if the planetary-scale wave has an initial value with a low-over-high dipole structure during P1 and P2. A blocking flow can occur in the downstream side (over Europe) of the Atlantic basin as a result of the energy dispersion of Rossby waves during the decay of the positive-phase NAO event. This blocking flow does not strictly correspond to a negative-phase NAO event because the blocking stays mainly over the European continent. However, when the Atlantic storm-track eddies are rather strong, the blocking flow occurring over the European continent is enhanced and can retrograde into the Atlantic region and finally become a long-lived negative-phase NAO event. In this case, the NAO event can transit from the positive phase to the negative phase. Thus, the winter-mean NAO index during P2 will inevitably decline because of the increase in days of negative-phase NAO events in winter because the Atlantic storm track exhibits a marked intensification in the time interval. The transition of the NAO event from the positive phase to the negative phase can also be observed only when the downstream development of the Atlantic storm-track eddy activity is rather prominent. Thus, it appears that there is a physical link between intraseasonal and interannual time scales of the NAO when the Atlantic storm track exhibits an interannual variability.


Sign in / Sign up

Export Citation Format

Share Document