The Effect of Internally Generated Inner-Core Asymmetries on Tropical Cyclone Potential Intensity*

2007 ◽  
Vol 64 (4) ◽  
pp. 1165-1188 ◽  
Author(s):  
Bo Yang ◽  
Yuqing Wang ◽  
Bin Wang

Abstract In a quiescent environment on an f plane, the internal dynamic processes of a tropical cyclone (TC) can generate axially asymmetric circulations (asymmetries) in its inner-core region. The present study investigates how these inner-core asymmetries affect TC intensity. For this purpose, a three-dimensional (3D) TC model and its axisymmetric (2D) version were used. Both have identical model vertical structure and use the same set of parameters and the same initial conditions. The differences between the two model runs are considered to be due to mainly the effects of the TC asymmetries. The results show that the presence of asymmetries in the 3D run reduces the TC final intensity by about 15% compared with the 2D run, suggesting that the TC asymmetry is a limiting factor to the potential intensity (PI). In the 2D run without asymmetries, the convective heating in the eyewall generates an annular tower of high potential vorticity (PV) with relatively low PV in the eye. The eyewall tilts outward with height significantly. Underneath the tilted eyewall the downdrafts induced by evaporation of rain and melting of snow and graupel make the subcloud-layer inflow dry and cool, which lowers the boundary layer equivalent potential temperature (θe), thus increasing the entropy difference between the air and sea in the vicinity of the radius of maximum wind (RMW). The increased air–sea entropy deficit leads to more energy input into TC from the underlying ocean and thus a greater final intensity. On the other hand, in the 3D run, the model-resolved asymmetric eddies, which are characterized by the vortex Rossby waves in the mid-lower troposphere, play important roles in modifying the symmetric structure of the TC. Potential vorticity and θe budgets indicate that significant inward PV mixing from the eyewall into the eye results in a less-tilted eyewall, which in turn limits the drying and cooling effects of downdrafts in the subcloud layer and reduces the air–sea entropy deficit under the eyewall, thereby reducing the TC intensity. The angular momentum budget analysis shows that the asymmetric eddies tend to reduce the strength of the primary circulation in the vicinity of the RMW. This eddy contribution to the azimuthal mean angular momentum budget is larger than the parameterized horizontal diffusion contribution in the 3D run, suggesting an overall diffusive effect of the asymmetric eddies on the symmetric circulation.

2013 ◽  
Vol 70 (8) ◽  
pp. 2547-2565 ◽  
Author(s):  
Marie-Dominique Leroux ◽  
Matthieu Plu ◽  
David Barbary ◽  
Frank Roux ◽  
Philippe Arbogast

Abstract The rapid intensification of Tropical Cyclone (TC) Dora (2007, southwest Indian Ocean) under upper-level trough forcing is investigated. TC–trough interaction is simulated using a limited-area operational numerical weather prediction model. The interaction between the storm and the trough involves a coupled evolution of vertical wind shear and binary vortex interaction in the horizontal and vertical dimensions. The three-dimensional potential vorticity structure associated with the trough undergoes strong deformation as it approaches the storm. Potential vorticity (PV) is advected toward the tropical cyclone core over a thick layer from 200 to 500 hPa while the TC upper-level flow turns cyclonic from the continuous import of angular momentum. It is found that vortex intensification first occurs inside the eyewall and results from PV superposition in the thick aforementioned layer. The main pathway to further storm intensification is associated with secondary eyewall formation triggered by external forcing. Eddy angular momentum convergence and eddy PV fluxes are responsible for spinning up an outer eyewall over the entire troposphere, while spindown is observed within the primary eyewall. The 8-km-resolution model is able to reproduce the main features of the eyewall replacement cycle observed for TC Dora. The outer eyewall intensifies further through mean vertical advection under dynamically forced upward motion. The processes are illustrated and quantified using various diagnostics.


Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 319
Author(s):  
Lijun Yu ◽  
Shuhui Wu ◽  
Zhanhong Ma

The characteristics of moist static energy (MSE) and its budget in a simulated tropical cyclone (TC) are examined in this study. Results demonstrate that MSE in a TC system is enhanced as the storm strengthens, primarily because of two mechanisms: upward transfer of surface heat fluxes and subsequent warming of the upper troposphere. An inspection of the interchangeable approximation between MSE and equivalent potential temperature (θe) suggests that although MSE is capable of capturing overall structures of θe, some important features will still be distorted, specifically the low-MSE pool outside the eyewall. In this low-MSE region, from the budget analysis, the discharge of MSE in the boundary layer may even surpass the recharge of MSE from the ocean. Unlike the volume-averaged MSE, the mass-weighted MSE in a fixed volume following the TC shows no apparent increase as the TC intensifies, because the atmosphere becomes continually thinner accompanying the warming of the storm. By calculating a mass-weighted volume MSE budget, the TC system is found to export MSE throughout its lifetime, since the radial outflow overwhelms the radial inflow. Moreover, the more intensified the TC is, the more export of MSE there tends to be. The input of MSE by surface heat fluxes is roughly balanced by the combined effects of radiation and lateral export, wherein a great majority of the imported MSE is reduced by radiation, while the export of MSE from the TC system to the environment accounts for only a small portion.


2018 ◽  
Vol 75 (1) ◽  
pp. 297-326 ◽  
Author(s):  
Guanghua Chen ◽  
Chun-Chieh Wu ◽  
Yi-Hsuan Huang

The effects of convective and stratiform diabatic processes in the near-core region on tropical cyclone (TC) structure and intensity change are examined by artificially modifying the convective and stratiform heating/cooling between 40- and 80-km radii. Sensitivity experiments show that the absence of convective heating in the annulus can weaken TC intensity and decrease the inner-core size. The increased convective heating generates a thick and polygonal eyewall, while the storm intensifies more gently than that in the control run. The removal of stratiform heating can slow down TC intensification with a moderate intensity, whereas the doubling of stratiform heating has little effect on the TC evolution compared to the control run. The halved stratiform cooling facilitates TC rapid intensification and a compact inner-core structure with the spiral rainbands largely suppressed. With the stratiform cooling doubled, the storm terminates intensification and eventually develops a double-eyewall-like structure accompanied by the significantly outward expansion of the inner-core size. The removal of both stratiform heating and cooling generates the strongest storm with the structure and intensity similar to those in the experiment with stratiform cooling halved. When both stratiform heating and cooling are doubled, the storm first decays rapidly, followed by the vertical connection of the updrafts at mid- to upper levels in the near-core region and at lower levels in the collapsed eyewall, which reinvigorates the eyewall convection but with a large outward slope.


2020 ◽  
Vol 77 (6) ◽  
pp. 2067-2090
Author(s):  
Satoki Tsujino ◽  
Hung-Chi Kuo

Abstract The inner-core dynamics of Supertyphoon Haiyan (2013) undergoing rapid intensification (RI) are studied with a 2-km-resolution cloud-resolving model simulation. The potential vorticity (PV) field in the simulated storm reveals an elliptical and polygonal-shaped eyewall at the low and middle levels during RI onset. The PV budget analysis confirms the importance of PV mixing at this stage, that is, the asymmetric transport of diabatically generated PV to the storm center from the eyewall and the ejection of PV filaments outside the eyewall. We employ a piecewise PV inversion (PPVI) and an omega equation to interpret the model results in balanced dynamics. The omega equation diagnosis suggests eye dynamical warming is associated with the PV mixing. The PPVI indicates that PV mixing accounts for about 50% of the central pressure fall during RI onset. The decrease of central pressure enhances the boundary layer (BL) inflow. The BL inflow leads to contraction of the radius of the maximum tangential wind (RMW) and the formation of a symmetric convective PV tower inside the RMW. The eye in the later stage of the RI is warmed by the subsidence associated with the convective PV towers. The results suggest that the pressure change associated with PV mixing, the increase of the symmetric BL radial inflow, and the development of a symmetric convective PV tower are the essential collaborating dynamics for RI. An experiment with 500-m resolution shows that the convergence of BL inflow can lead to an updraft magnitude of 20 m s−1 and to a convective PV tower with a peak value of 200 PVU (1 PVU = 10−6 K kg−1 m2 s−1).


2019 ◽  
Vol 76 (1) ◽  
pp. 209-229 ◽  
Author(s):  
Patrick Duran ◽  
John Molinari

Abstract Upper-level static stability (N2) variations can influence the evolution of the transverse circulation and potential vorticity in intensifying tropical cyclones (TCs). This paper examines these variations during the rapid intensification (RI) of a simulated TC. Over the eye, N2 near the tropopause decreases and the cold-point tropopause rises by up to 4 km at the storm center. Outside of the eye, N2 increases considerably just above the cold-point tropopause and the tropopause remains near its initial level. A budget analysis reveals that the advection terms, which include differential advection of potential temperature θ and direct advection of N2, are important throughout the upper troposphere and lower stratosphere. These terms are particularly pronounced within the eye, where they destabilize the layer near and above the cold-point tropopause. Outside of the eye, a radial–vertical circulation develops during RI, with strong outflow below the tropopause and weak inflow above. Differential advection of θ near the outflow jet provides forcing for stabilization below the outflow maximum and destabilization above. Turbulence induced by vertical wind shear on the flanks of the outflow maximum also modifies the vertical stability profile. Meanwhile, radiative cooling tendencies at the top of the cirrus canopy generally act to destabilize the upper troposphere and stabilize the lower stratosphere. The results suggest that turbulence and radiation, alongside differential advection, play fundamental roles in the upper-level N2 evolution of TCs. These N2 tendencies could have implications for both the TC diurnal cycle and the tropopause-layer potential vorticity evolution in TCs.


Author(s):  
Zhanhong Ma ◽  
Jianfang Fei

AbstractRecent numerical modeling studies demonstrate that dry tropical cyclones can be stably sustained via supply of surface sensible heat flux. This raises questions of whether surface sensible heat flux (SHX) and latent heat flux (LHX) have the same effect on the intensity evolution of tropical cyclones. An estimation of equivalent potential temperature budget in the boundary layer shows that LHX leads to larger increase in equivalent potential temperature than SHX even when they possess the same magnitude. By formulating these two kinds of surface heat fluxes with the same mathematical framework, the simulated intensifications of moist and dry tropical cyclones are compared, with the former driven exclusively by LHX and the latter by SHX. Results show significantly larger intensification rates for the tropical cyclone driven by LHX than that by SHX, revealing low effectiveness of SHX in the intensification of tropical cyclones. The diabatic heating in the moist tropical cyclone occurs accompanying the convection, while it is merely pronounced near the surface in the dry tropical cyclone and is decoupled from the dry convection. A new surface pressure tendency equation is proposed, without incorporating implicit pressure tendency term on the right-hand side. The budget analysis indicates that the SHX is less effective than LHX in lowering surface central pressure and therefore in tropical cyclone intensification. A series of sensitivity experiments suggest that the threshold of energy input required for spinning up a tropical cyclone is lower in the form of LHX than that of SHX.


2020 ◽  
Author(s):  
Xiaohao Qin ◽  
Wansuo Duan ◽  
Hui Xu

<p>The present study uses the nonlinear singular vector (NFSV) approach to identify the optimally-growing tendency perturbations of the Weather Research and Forecasting (WRF) model for tropical cyclone (TC) intensity forecasts. For nine selected TC cases, the NFSV-tendency perturbations of the WRF model, including components of potential temperature and/or moisture, are calculated when TC intensities are forecasted with a 24-hour lead time, and their respective potential temperature components are demonstrated to have more impact on the TC intensity forecasts. The perturbations coherently show barotropic structure around the central location of the TCs at the 24-hour lead time, and their dominant energies concentrate in the middle layers of the atmosphere. Moreover, such structures do not depend on TC intensities and subsequent development of the TC. The NFSV-tendency perturbations may indicate that the model uncertainty that is represented by tendency perturbations but associated with the inner-core of TCs, makes larger contributions to the TC intensity forecast uncertainty. Further analysis shows that the TC intensity forecast skill could be greatly improved as preferentially superimposing an appropriate tendency perturbation associated with the sensitivity of NFSVs to correct the model, even if using a WRF with coarse resolution.</p><div> <div> </div> </div>


2015 ◽  
Vol 72 (1) ◽  
pp. 120-140 ◽  
Author(s):  
Zhanhong Ma ◽  
Jianfang Fei ◽  
Xiaogang Huang ◽  
Xiaoping Cheng

Abstract The contributions of surface sensible heat fluxes (SHX) to the evolution of tropical cyclone (TC) intensity and structure are examined in this study by conducting cloud-resolving simulations. Results suggest that although the peak values of SHX could account for nearly 30% of those of the total surface latent and sensible heat fluxes, the impact of SHX on TC intensification is nonetheless not distinct. However, the TC size shows great sensitivity to the SHX that the storm is shrunk by over 20% after removing the SHX. A potential temperature budget analysis indicates that the adiabatic cooling accompanying the radial inflow is largely balanced by the transfer of sensible heat fluxes rather than the entrainment of subsiding air from aloft. If there is upward transfer of SHX from underlying ocean so that the near-surface potential temperature decreases upward, the SHX will play a vital role; instead, if the upward SHX are absent so that the potential temperature increases upward near the surface, the downward sensible heat fluxes become the dominant contributor to warm the inflow air. The changes in TC size are found to be primarily caused by the rainband activities. The SHX help maintain high convective available potential energy as well as the cold pool feature outside the eyewall, thus being crucial for the growth of outer rainbands. If without upward transport of SHX, the outer-rainband activities could be largely suppressed, thereby leading to a decrease of the TC size.


2009 ◽  
Vol 137 (9) ◽  
pp. 3047-3054 ◽  
Author(s):  
Joseph Egger ◽  
Klaus-Peter Hoinka

Abstract The relation of pressure torques and mountain torques is investigated on the basis of observations for the polar caps, two midlatitude and two subtropical belts, and a tropical belt by evaluating the lagged covariances of these torques for various isentropic surfaces. It is only in the polar domains and the northern midlatitude belts that the transfer of angular momentum to and from the earth at the mountains is associated with pressure torques acting in the same sense. The situation is more complicated in all other belts. The covariances decline with increasing potential temperature (height). The role of both torques in the angular momentum budget of a belt is discussed.


2011 ◽  
Vol 68 (3) ◽  
pp. 430-449 ◽  
Author(s):  
Hironori Fudeyasu ◽  
Yuqing Wang

Abstract The balanced contribution to the intensification of a tropical cyclone simulated in the three-dimensional, nonhydrostatic, full-physics tropical cyclone model version 4 (TCM4), in particular the spinup of the outer-core circulation, is investigated by solving the Sawyer–Eliassen equation and by computing terms in the azimuthal-mean tangential wind tendency equation. Results demonstrate that the azimuthal-mean secondary circulation (radial and vertical circulation) and the spinup of the midtropospheric outer-core circulation in the simulated tropical cyclone are well captured by balance dynamics. The midtropospheric inflow develops in response to diabatic heating in mid–upper-tropospheric stratiform (anvil) clouds outside the eyewall in active spiral rainbands and transports absolute angular momentum inward to spin up the outer-core circulation. Although the azimuthal-mean diabatic heating rate in the eyewall is the largest, its contribution to radial winds and thus the spinup of outer-core circulation in the middle troposphere is rather weak. This is because the high inertial stability in the inner-core region resists the radial inflow in the middle troposphere, limiting the inward transport of absolute angular momentum. The result thus suggests that diabatic heating in spiral rainbands is the key to the continued growth of the storm-scale circulation.


Sign in / Sign up

Export Citation Format

Share Document