scholarly journals Response of the Ocean Natural Carbon Storage to Projected Twenty-First-Century Climate Change

2014 ◽  
Vol 27 (5) ◽  
pp. 2033-2053 ◽  
Author(s):  
Raffaele Bernardello ◽  
Irina Marinov ◽  
Jaime B. Palter ◽  
Jorge L. Sarmiento ◽  
Eric D. Galbraith ◽  
...  

Abstract The separate impacts of wind stress, buoyancy fluxes, and CO2 solubility on the oceanic storage of natural carbon are assessed in an ensemble of twentieth- to twenty-first-century simulations, using a coupled atmosphere–ocean–carbon cycle model. Time-varying perturbations for surface wind stress, temperature, and salinity are calculated from the difference between climate change and preindustrial control simulations, and are imposed on the ocean in separate simulations. The response of the natural carbon storage to each perturbation is assessed with novel prognostic biogeochemical tracers, which can explicitly decompose dissolved inorganic carbon into biological, preformed, equilibrium, and disequilibrium components. Strong responses of these components to changes in buoyancy and winds are seen at high latitudes, reflecting the critical role of intermediate and deep waters. Overall, circulation-driven changes in carbon storage are mainly due to changes in buoyancy fluxes, with wind-driven changes playing an opposite but smaller role. Results suggest that climate-driven perturbations to the ocean natural carbon cycle will contribute 20 Pg C to the reduction of the ocean accumulated total carbon uptake over the period 1860–2100. This reflects a strong compensation between a buildup of remineralized organic matter associated with reduced deep-water formation (+96 Pg C) and a decrease of preformed carbon (−116 Pg C). The latter is due to a warming-induced decrease in CO2 solubility (−52 Pg C) and a circulation-induced decrease in disequilibrium carbon storage (−64 Pg C). Climate change gives rise to a large spatial redistribution of ocean carbon, with increasing concentrations at high latitudes and stronger vertical gradients at low latitudes.

2021 ◽  
Author(s):  
Anna Katavouta ◽  
Richard G. Williams

Abstract. The ocean response to carbon emissions involves a competition between the increase in atmospheric CO2 acting to enhance the ocean carbon storage, characterised by the carbon-concentration feedback, and climate change acting to decrease the ocean carbon storage, characterised by the carbon-climate feedback. The contribution from different ocean basins to the carbon cycle feedbacks and its control by the ocean carbonate chemistry, physical ventilation and biological processes is explored in diagnostics of 10 CMIP6 Earth system models. To gain mechanist insight, the dependence of these feedbacks to the Atlantic Meridional Overturning Circulation (AMOC) is also investigated in an idealised climate model and the CMIP6 models. The Atlantic, Pacific and Southern Oceans contribute equally to the carbon-concentration feedback, despite their different size. This large contribution from the Atlantic Ocean relative to its size is associated with an enhanced carbon storage in the ocean interior due to a strong local physical ventilation and an influx of carbon transported from the Southern Ocean. The Atlantic Ocean provides the largest contribution to the carbon-climate feedback relative to its size, which is primarily due to climate change acting to reduce the physical ventilation. The Southern Ocean provides a relatively small contribution to the carbon-climate feedback, due to a compensation between the climate effects of the combined decrease in solubility and physical ventilation, and the increase in accumulation of regenerated carbon in the ocean interior. In the Atlantic Ocean, the AMOC strength and its weakening with warming has a strong control on the carbon cycle feedbacks that leads to a moderate dependence of these feedbacks to AMOC on global scale. In the Pacific, Indian and Southern Oceans there is no clear correlation between AMOC and the carbon cycle feedbacks, suggesting that other processes control the ocean ventilation and carbon storage there.


Author(s):  
Richard A. Betts ◽  
Matthew Collins ◽  
Deborah L. Hemming ◽  
Chris D. Jones ◽  
Jason A. Lowe ◽  
...  

The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) assessed a range of scenarios of future greenhouse-gas emissions without policies to specifically reduce emissions, and concluded that these would lead to an increase in global mean temperatures of between 1.6°C and 6.9°C by the end of the twenty-first century, relative to pre-industrial. While much political attention is focused on the potential for global warming of 2°C relative to pre-industrial, the AR4 projections clearly suggest that much greater levels of warming are possible by the end of the twenty-first century in the absence of mitigation. The centre of the range of AR4-projected global warming was approximately 4°C. The higher end of the projected warming was associated with the higher emissions scenarios and models, which included stronger carbon-cycle feedbacks. The highest emissions scenario considered in the AR4 (scenario A1FI) was not examined with complex general circulation models (GCMs) in the AR4, and similarly the uncertainties in climate–carbon-cycle feedbacks were not included in the main set of GCMs. Consequently, the projections of warming for A1FI and/or with different strengths of carbon-cycle feedbacks are often not included in a wider discussion of the AR4 conclusions. While it is still too early to say whether any particular scenario is being tracked by current emissions, A1FI is considered to be as plausible as other non-mitigation scenarios and cannot be ruled out. (A1FI is a part of the A1 family of scenarios, with ‘FI’ standing for ‘fossil intensive’. This is sometimes erroneously written as A1F1, with number 1 instead of letter I.) This paper presents simulations of climate change with an ensemble of GCMs driven by the A1FI scenario, and also assesses the implications of carbon-cycle feedbacks for the climate-change projections. Using these GCM projections along with simple climate-model projections, including uncertainties in carbon-cycle feedbacks, and also comparing against other model projections from the IPCC, our best estimate is that the A1FI emissions scenario would lead to a warming of 4°C relative to pre-industrial during the 2070s. If carbon-cycle feedbacks are stronger, which appears less likely but still credible, then 4°C warming could be reached by the early 2060s in projections that are consistent with the IPCC’s ‘likely range’.


2008 ◽  
Vol 21 (22) ◽  
pp. 5820-5834 ◽  
Author(s):  
R. J. Matear ◽  
A. Lenton

Abstract Climate change over the last several decades is suggested to cause a decrease in the magnitude of the uptake of CO2 by the Southern Ocean (Le Quere et al.). In this study, the atmospheric fields from NCEP R1 for the years 1948–2003 are used to drive an ocean biogeochemical model to probe how changes in the heat and freshwater fluxes and in the winds affect the Southern Ocean’s uptake of carbon. Over this period, the model simulations herein show that the increases in heat and freshwater fluxes drive a net increase in Southern Ocean uptake (south of 40°S) while the increases in wind stresses drive a net decrease in uptake. The total Southern Ocean response is nearly identical with the simulation without climate change because the heat and freshwater flux response is approximately both equal and opposite to the wind stress response. It is also shown that any change in the Southern Ocean anthropogenic carbon uptake is always opposed by a much larger change in the natural carbon air–sea exchange. For the 1948–2003 period, the changes in the natural carbon cycle dominate the Southern Ocean carbon uptake response to climate change. However, it is shown with a simple box model that when atmospheric CO2 levels exceed the partial pressure of carbon dioxide (pCO2) of the upwelled Circumpolar Deep Water (≈450 μatm) the Southern Ocean uptake response will be dominated by the changes in anthropogenic carbon uptake. Therefore, the suggestion that the Southern Ocean carbon uptake is a positive feedback to global warming is only a transient response that will change to a negative feedback in the near future if the present climate trend continues. Associated with the increased outgassing of carbon from the natural carbon cycle was a reduction in the aragonite saturation state of the high-latitude Southern Ocean (south of 60°S). In the simulation with just wind stress changes, the reduction in the high-latitude Southern Ocean aragonite saturation state (≈0.2) was comparable to the magnitude of the decline in the aragonite saturation state over the last 4 decades because of rising atmospheric CO2 levels (≈0.2). The simulation showed that climate change could significantly impact aragonite saturation state in the Southern Ocean.


2005 ◽  
Vol 18 (10) ◽  
pp. 1609-1628 ◽  
Author(s):  
H. Damon Matthews ◽  
Andrew J. Weaver ◽  
Katrin J. Meissner

Abstract The behavior of the terrestrial carbon cycle under historical and future climate change is examined using the University of Victoria Earth System Climate Model, now coupled to a dynamic terrestrial vegetation and global carbon cycle model. When forced by historical emissions of CO2 from fossil fuels and land-use change, the coupled climate–carbon cycle model accurately reproduces historical atmospheric CO2 trends, as well as terrestrial and oceanic uptake for the past two decades. Under six twenty-first-century CO2 emissions scenarios, both terrestrial and oceanic carbon sinks continue to increase, though terrestrial uptake slows in the latter half of the century. Climate–carbon cycle feedbacks are isolated by comparing a coupled model run with a run where climate and the carbon cycle are uncoupled. The modeled positive feedback between the carbon cycle and climate is found to be relatively small, resulting in an increase in simulated CO2 of 60 ppmv at the year 2100. Including non-CO2 greenhouse gas forcing and increasing the model’s climate sensitivity increase the effect of this feedback to 140 ppmv. The UVic model does not, however, simulate a switch from a terrestrial carbon sink to a source during the twenty-first century, as earlier studies have suggested. This can be explained by a lack of substantial reductions in simulated vegetation productivity due to climate changes.


Author(s):  
Hyun Min Sung ◽  
Jisun Kim ◽  
Sungbo Shim ◽  
Jeong-byn Seo ◽  
Sang-Hoon Kwon ◽  
...  

AbstractThe National Institute of Meteorological Sciences-Korea Meteorological Administration (NIMS-KMA) has participated in the Coupled Model Inter-comparison Project (CMIP) and provided long-term simulations using the coupled climate model. The NIMS-KMA produces new future projections using the ensemble mean of KMA Advanced Community Earth system model (K-ACE) and UK Earth System Model version1 (UKESM1) simulations to provide scientific information of future climate changes. In this study, we analyze four experiments those conducted following the new shared socioeconomic pathway (SSP) based scenarios to examine projected climate change in the twenty-first century. Present day (PD) simulations show high performance skill in both climate mean and variability, which provide a reliability of the climate models and reduces the uncertainty in response to future forcing. In future projections, global temperature increases from 1.92 °C to 5.20 °C relative to the PD level (1995–2014). Global mean precipitation increases from 5.1% to 10.1% and sea ice extent decreases from 19% to 62% in the Arctic and from 18% to 54% in the Antarctic. In addition, climate changes are accelerating toward the late twenty-first century. Our CMIP6 simulations are released to the public through the Earth System Grid Federation (ESGF) international data sharing portal and are used to support the establishment of the national adaptation plan for climate change in South Korea.


2018 ◽  
Vol 14 (8) ◽  
pp. 1229-1252 ◽  
Author(s):  
Carlye D. Peterson ◽  
Lorraine E. Lisiecki

Abstract. We present a compilation of 127 time series δ13C records from Cibicides wuellerstorfi spanning the last deglaciation (20–6 ka) which is well-suited for reconstructing large-scale carbon cycle changes, especially for comparison with isotope-enabled carbon cycle models. The age models for the δ13C records are derived from regional planktic radiocarbon compilations (Stern and Lisiecki, 2014). The δ13C records were stacked in nine different regions and then combined using volume-weighted averages to create intermediate, deep, and global δ13C stacks. These benthic δ13C stacks are used to reconstruct changes in the size of the terrestrial biosphere and deep ocean carbon storage. The timing of change in global mean δ13C is interpreted to indicate terrestrial biosphere expansion from 19–6 ka. The δ13C gradient between the intermediate and deep ocean, which we interpret as a proxy for deep ocean carbon storage, matches the pattern of atmospheric CO2 change observed in ice core records. The presence of signals associated with the terrestrial biosphere and atmospheric CO2 indicates that the compiled δ13C records have sufficient spatial coverage and time resolution to accurately reconstruct large-scale carbon cycle changes during the glacial termination.


2017 ◽  
Vol 30 (17) ◽  
pp. 6701-6722 ◽  
Author(s):  
Daniel Bannister ◽  
Michael Herzog ◽  
Hans-F. Graf ◽  
J. Scott Hosking ◽  
C. Alan Short

The Sichuan basin is one of the most densely populated regions of China, making the area particularly vulnerable to the adverse impacts associated with future climate change. As such, climate models are important for understanding regional and local impacts of climate change and variability, like heat stress and drought. In this study, climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are validated over the Sichuan basin by evaluating how well each model can capture the phase, amplitude, and variability of the regionally observed mean, maximum, and minimum temperature between 1979 and 2005. The results reveal that the majority of the models do not capture the basic spatial pattern and observed means, trends, and probability distribution functions. In particular, mean and minimum temperatures are underestimated, especially during the winter, resulting in biases exceeding −3°C. Models that reasonably represent the complex basin topography are found to generally have lower biases overall. The five most skillful climate models with respect to the regional climate of the Sichuan basin are selected to explore twenty-first-century temperature projections for the region. Under the CMIP5 high-emission future climate change scenario, representative concentration pathway 8.5 (RCP8.5), the temperatures are projected to increase by approximately 4°C (with an average warming rate of +0.72°C decade−1), with the greatest warming located over the central plains of the Sichuan basin, by 2100. Moreover, the frequency of extreme months (where mean temperature exceeds 28°C) is shown to increase in the twenty-first century at a faster rate compared to the twentieth century.


Sign in / Sign up

Export Citation Format

Share Document