scholarly journals WRF Model Sensitivity to Land Surface Model and Cumulus Parameterization under Short-Term Climate Extremes over the Southern Great Plains of the United States

2014 ◽  
Vol 27 (20) ◽  
pp. 7703-7724 ◽  
Author(s):  
Lisi Pei ◽  
Nathan Moore ◽  
Shiyuan Zhong ◽  
Lifeng Luo ◽  
David W. Hyndman ◽  
...  

Abstract Extreme weather and climate events, especially short-term excessive drought and wet periods over agricultural areas, have received increased attention. The Southern Great Plains (SGP) is one of the largest agricultural regions in North America and features the underlying Ogallala-High Plains Aquifer system worth great economic value in large part due to production gains from groundwater. Climate research over the SGP is needed to better understand complex coupled climate–hydrology–socioeconomic interactions critical to the sustainability of this region, especially under extreme climate scenarios. Here the authors studied growing-season extreme conditions using the Weather Research and Forecasting (WRF) Model. The six most extreme recent years, both wet and dry, were simulated to investigate the impacts of land surface model and cumulus parameterization on the simulated hydroclimate. The results show that under short-term climate extremes, the land surface model plays a more important role modulating the land–atmosphere water budget, and thus the entire regional climate, than the cumulus parameterization under current model configurations. Between the two land surface models tested, the more sophisticated land surface model produced significantly larger wet bias in large part due to overestimation of moisture flux convergence, which is attributed mainly to an overestimation of the surface evapotranspiration during the simulated period. The deficiencies of the cumulus parameterizations resulted in the model’s inability to depict the diurnal rainfall variability. Both land surface processes and cumulus parameterizations remain the most challenging parts of regional climate modeling under extreme climates over the SGP, with the former strongly affecting the precipitation amount and the latter strongly affecting the precipitation pattern.

2020 ◽  
Vol 13 (11) ◽  
pp. 5345-5366
Author(s):  
Almudena García-García ◽  
Francisco José Cuesta-Valero ◽  
Hugo Beltrami ◽  
Fidel González-Rouco ◽  
Elena García-Bustamante ◽  
...  

Abstract. The representation and projection of extreme temperature and precipitation events in regional and global climate models are of major importance for the study of climate change impacts. However, state-of-the-art global and regional climate model simulations yield a broad inter-model range of intensity, duration and frequency of these extremes. Here, we present a modeling experiment using the Weather Research and Forecasting (WRF) model to determine the influence of the land surface model (LSM) component on uncertainties associated with extreme events. First, we analyze land–atmosphere interactions within four simulations performed by the WRF model from 1980 to 2012 over North America, using three different LSMs. Results show LSM-dependent differences at regional scales in the frequency of occurrence of events when surface conditions are altered by atmospheric forcing or land processes. The inter-model range of extreme statistics across the WRF simulations is large, particularly for indices related to the intensity and duration of temperature and precipitation extremes. Our results show that the WRF simulation of the climatology of heat extremes can be 5 ∘C warmer and 6 d longer depending on the employed LSM component, and similarly for cold extremes and heavy precipitation events. Areas showing large uncertainty in WRF-simulated extreme events are also identified in a model ensemble from three different regional climate model (RCM) simulations participating in the Coordinated Regional Climate Downscaling Experiment (CORDEX) project, revealing the implications of these results for other model ensembles. Thus, studies based on multi-model ensembles and reanalyses should include a variety of LSM configurations to account for the uncertainty arising from this model component or to test the performance of the selected LSM component before running the whole simulation. This study illustrates the importance of the LSM choice in climate simulations, supporting the development of new modeling studies using different LSM components to understand inter-model differences in simulating extreme temperature and precipitation events, which in turn will help to reduce uncertainties in climate model projections.


2020 ◽  
Author(s):  
Almudena García-García ◽  
Francisco José Cuesta-Valero ◽  
Hugo Beltrami ◽  
J. Fidel González-Rouco ◽  
Elena García-Bustamante ◽  
...  

Abstract. The representation and projection of extreme temperature and precipitation events in regional and global climate models are of major importance for the study of climate change impacts. However, state-of-the-art global and regional climate model simulations yield a broad inter-model range of intensity, duration and frequency of these extremes. Here, we present a modeling experiment using the Weather Research and Forecasting (WRF) model to determine the influence of the land surface model (LSM) component on uncertainties associated with extreme events. First, we evaluate land-atmosphere interactions within four simulations performed by the WRF model using three different LSMs from 1980 to 2012 over North America. Results show LSM-dependent differences at regional scales in the frequency of occurrence of events when surface conditions are altered by atmospheric forcing or land processes. The inter-model range of extreme statistics across the WRF simulations is large, particularly for indices related to the intensity and duration of temperature and precipitation extremes. Areas showing large uncertainty in WRF simulated extreme events are also identified in a model ensemble from three different Regional Climate Model (RCM) simulations participating in the Coordinated Regional Climate Downscaling Experiment (CORDEX) project, revealing the implications of these results for other model ensembles. This study illustrates the importance of the LSM choice in climate simulations, supporting the development of new modeling studies using different LSM components to understand inter-model differences in simulating temperature and precipitation extreme events, which in turn will help to reduce uncertainties in climate model projections.


2013 ◽  
Vol 14 (1) ◽  
pp. 3-24 ◽  
Author(s):  
Joseph A. Santanello ◽  
Christa D. Peters-Lidard ◽  
Aaron Kennedy ◽  
Sujay V. Kumar

Abstract Land–atmosphere (L–A) interactions play a critical role in determining the diurnal evolution of land surface and planetary boundary layer (PBL) temperature and moisture states and fluxes. In turn, these interactions regulate the strength of the connection between surface moisture and precipitation in a coupled system. To address model deficiencies, recent studies have focused on development of diagnostics to quantify the strength and accuracy of the land–PBL coupling at the process level. In this paper, a diagnosis of the nature and impacts of local land–atmosphere coupling (LoCo) during dry and wet extreme conditions is presented using a combination of models and observations during the summers of 2006 and 2007 in the U.S. southern Great Plains. A range of diagnostics exploring the links and feedbacks between soil moisture and precipitation is applied to the dry/wet regimes exhibited in this region, and in the process, a thorough evaluation of nine different land–PBL scheme couplings is conducted under the umbrella of a high-resolution regional modeling test bed. Results show that the sign and magnitude of errors in land surface energy balance components are sensitive to the choice of land surface model, regime type, and running mode. In addition, LoCo diagnostics show that the sensitivity of L–A coupling is stronger toward the land during dry conditions, while the PBL scheme coupling becomes more important during the wet regime. Results also demonstrate how LoCo diagnostics can be applied to any modeling system (e.g., reanalysis products) in the context of their integrated impacts on the process chain connecting the land surface to the PBL and in support of hydrological anomalies.


2020 ◽  
Author(s):  
Almudena García-García ◽  
Francisco José Cuesta-Valero ◽  
Hugo Beltrami ◽  
J. Fidel González-Rouco ◽  
Elena García-Bustamante ◽  
...  

<p class="western"><span>The representation and projection of extreme temperature and precipitation events in climate models are of major importance for developing polices to build communities’ resilience in the face of climate change. However, state-of-the-art global and regional climate model simulations yield a broad inter-model range of intensities, durations and frequencies of these extremes. </span></p> <p class="western"><span>Here, we present a modeling experiment using the Weather Research and Forecasting (WRF) Regional Climate Model (RCM) to determine the influence of the choice of land surface model (LSM) component on the uncertainty in the simulation of extreme event statistics. First, we evaluate land-atmosphere interactions within four simulations performed with the WRF model coupled to three different LSMs from 1980 to 2012 over North America. Results show regional differences among simulations for the frequency of events when surface conditions are altered by atmospheric forcing or by land surface processes. Second, we find a large inter-model range of extreme statistics across the ensemble of WRF-LSM simulations. This is particularly the case for indices related to the intensity and duration of temperature and precipitation extremes. </span></p> <p class="western"><span>Regions displaying large uncertainty in the WRF simulation of extreme events are also identified in a model ensemble experiment carried out with three different RCMs participating in the Coordinated Regional Climate Downscaling Experiment (CORDEX) project. This agreement between the model simulations performed in this work and the set of CORDEX simulations suggests that the implications of our results are valid for other model ensembles. This study illustrates the importance of supporting the development of new multi-LSM modeling studies to understand inter-model differences in simulating extreme events, ultimately helping to narrow down the range across climate model projections.</span></p>


2014 ◽  
Vol 7 (1) ◽  
pp. 361-386 ◽  
Author(s):  
D. N. Walters ◽  
K. D. Williams ◽  
I. A. Boutle ◽  
A. C. Bushell ◽  
J. M. Edwards ◽  
...  

Abstract. We describe Global Atmosphere 4.0 (GA4.0) and Global Land 4.0 (GL4.0): configurations of the Met Office Unified Model and JULES (Joint UK Land Environment Simulator) community land surface model developed for use in global and regional climate research and weather prediction activities. GA4.0 and GL4.0 are based on the previous GA3.0 and GL3.0 configurations, with the inclusion of developments made by the Met Office and its collaborators during its annual development cycle. This paper provides a comprehensive technical and scientific description of GA4.0 and GL4.0 as well as details of how these differ from their predecessors. We also present the results of some initial evaluations of their performance. Overall, performance is comparable with that of GA3.0/GL3.0; the updated configurations include improvements to the science of several parametrisation schemes, however, and will form a baseline for further ongoing development.


2017 ◽  
Vol 866 ◽  
pp. 108-111
Author(s):  
Theerapan Saesong ◽  
Pakpoom Ratjiranukool ◽  
Sujittra Ratjiranukool

Numerical Weather Model called The Weather Research and Forecasting model, WRF, developed by National Center for Atmospheric Research (NCAR) is adapted to be regional climate model. The model is run to perform the daily mean air surface temperatures over northern Thailand in 2010. Boundery dataset provided by National Centers for Environmental Prediction, NCEP FNL, (Final) Operational Global Analysis data which are on 10 x 10. The simulated temperatures by WRF with four land surface options, i.e., no land surface scheme (option 0), thermal diffusion (option 1), Noah land-surface (option 2) and RUC land-surface (option 3) were compared against observational data from Thai Meteorological Department (TMD). Preliminary analysis indicated WRF simulations with Noah scheme were able to reproduce the most reliable daily mean temperatures over northern Thailand.


2011 ◽  
Vol 42 (2-3) ◽  
pp. 95-112 ◽  
Author(s):  
Venkat Lakshmi ◽  
Seungbum Hong ◽  
Eric E. Small ◽  
Fei Chen

The importance of land surface processes has long been recognized in hydrometeorology and ecology for they play a key role in climate and weather modeling. However, their quantification has been challenging due to the complex nature of the land surface amongst other reasons. One of the difficult parts in the quantification is the effect of vegetation that are related to land surface processes such as soil moisture variation and to atmospheric conditions such as radiation. This study addresses various relational investigations among vegetation properties such as Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), surface temperature (TSK), and vegetation water content (VegWC) derived from satellite sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS) and EOS Advanced Microwave Scanning Radiometer (AMSR-E). The study provides general information about a physiological behavior of vegetation for various environmental conditions. Second, using a coupled mesoscale/land surface model, we examine the effects of vegetation and its relationship with soil moisture on the simulated land–atmospheric interactions through the model sensitivity tests. The Weather Research and Forecasting (WRF) model was selected for this study, and the Noah land surface model (Noah LSM) implemented in the WRF model was used for the model coupled system. This coupled model was tested through two parameterization methods for vegetation fraction using MODIS data and through model initialization of soil moisture from High Resolution Land Data Assimilation System (HRLDAS). Finally, this study evaluates the model improvements for each simulation method.


Heliyon ◽  
2019 ◽  
Vol 5 (9) ◽  
pp. e02469 ◽  
Author(s):  
Achenafi Teklay ◽  
Yihun T. Dile ◽  
Dereje H. Asfaw ◽  
Haimanote K. Bayabil ◽  
Kibruyesfa Sisay

2018 ◽  
Vol 19 (12) ◽  
pp. 1917-1933 ◽  
Author(s):  
Li Fang ◽  
Xiwu Zhan ◽  
Christopher R. Hain ◽  
Jifu Yin ◽  
Jicheng Liu

Abstract Green vegetation fraction (GVF) plays a crucial role in the atmosphere–land water and energy exchanges. It is one of the essential parameters in the Noah land surface model (LSM) that serves as the land component of a number of operational numerical weather prediction models at the National Centers for Environmental Prediction (NCEP) of NOAA. The satellite GVF products used in NCEP models are derived from a simple linear conversion of either the normalized difference vegetation index (NDVI) from the Advanced Very High Resolution Radiometer (AVHRR) currently or the enhanced vegetation index (EVI) from the Visible Infrared Imaging Radiometer Suite (VIIRS) planned for the near future. Since the NDVI or EVI is a simple spectral index of vegetation cover, GVFs derived from them may lack the biophysical meaning required in the Noah LSM. Moreover, the NDVI- or EVI-based GVF data products may be systematically biased over densely vegetated regions resulting from the saturation issue associated with spectral vegetation indices. On the other hand, the GVF is physically related to the leaf area index (LAI), and thus it could be beneficial to derive GVF from LAI data products. In this paper, the EVI-based and the LAI-based GVF derivation methods are mathematically analyzed and are found to be significantly different from each other. Impacts of GVF differences on the Noah LSM simulations and on weather forecasts of the Weather Research and Forecasting (WRF) Model are further assessed. Results indicate that LAI-based GVF outperforms the EVI-based one when used in both the offline Noah LSM and WRF Model.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 815
Author(s):  
Marcelo Somos-Valenzuela ◽  
Francisco Manquehual-Cheuque

The use of numerical weather prediction (NWP) model to dynamically downscale coarse climate reanalysis data allows for the capture of processes that are influenced by land cover and topographic features. Climate reanalysis downscaling is useful for hydrology modeling, where catchment processes happen on a spatial scale that is not represented in reanalysis models. Selecting proper parameterization in the NWP for downscaling is crucial to downscale the climate variables of interest. In this work, we are interested in identifying at least one combination of physics in the Weather Research Forecast (WRF) model that performs well in our area of study that covers the Baker River Basin and the Northern Patagonian Icecap (NPI) in the south of Chile. We used ERA-Interim reanalysis data to run WRF in twenty-four different combinations of physics for three years in a nested domain of 22.5 and 4.5 km with 34 vertical levels. From more to less confident, we found that, for the planetary boundary layer (PBL), the best option is to use YSU; for the land surface model (LSM), the best option is the five-Layer Thermal, RRTM for longwave, Dudhia for short wave radiation, and Thompson for the microphysics. In general, the model did well for temperature (average, minimum, maximum) for most of the observation points and configurations. Precipitation was good, but just a few configurations stood out (i.e., conf-9 and conf-10). Surface pressure and Relative Humidity results were not good or bad, and it depends on the statistics with which we evaluate the time series (i.e., KGE or NSE). The results for wind speed were inferior; there was a warm bias in all of the stations. Once we identify the best configuration in our experiment, we run WRF for one year using ERA5 and FNL0832 climate reanalysis. Our results indicate that Era-interim provided better results for precipitation. In the case of temperature, FNL0832 gave better results; however, all of the models’ performances were good. Therefore, working with ERA-Interim seems the best option in this region with the physics selected. We did not experiment with changes in resolution, which may have improved results with ERA5 that has a better spatial and temporal resolution.


Sign in / Sign up

Export Citation Format

Share Document