scholarly journals Variability and Predictability of West African Droughts: A Review on the Role of Sea Surface Temperature Anomalies

2015 ◽  
Vol 28 (10) ◽  
pp. 4034-4060 ◽  
Author(s):  
Belen Rodríguez-Fonseca ◽  
Elsa Mohino ◽  
Carlos R. Mechoso ◽  
Cyril Caminade ◽  
Michela Biasutti ◽  
...  

Abstract The Sahel experienced a severe drought during the 1970s and 1980s after wet periods in the 1950s and 1960s. Although rainfall partially recovered since the 1990s, the drought had devastating impacts on society. Most studies agree that this dry period resulted primarily from remote effects of sea surface temperature (SST) anomalies amplified by local land surface–atmosphere interactions. This paper reviews advances made during the last decade to better understand the impact of global SST variability on West African rainfall at interannual to decadal time scales. At interannual time scales, a warming of the equatorial Atlantic and Pacific/Indian Oceans results in rainfall reduction over the Sahel, and positive SST anomalies over the Mediterranean Sea tend to be associated with increased rainfall. At decadal time scales, warming over the tropics leads to drought over the Sahel, whereas warming over the North Atlantic promotes increased rainfall. Prediction systems have evolved from seasonal to decadal forecasting. The agreement among future projections has improved from CMIP3 to CMIP5, with a general tendency for slightly wetter conditions over the central part of the Sahel, drier conditions over the western part, and a delay in the monsoon onset. The role of the Indian Ocean, the stationarity of teleconnections, the determination of the leader ocean basin in driving decadal variability, the anthropogenic role, the reduction of the model rainfall spread, and the improvement of some model components are among the most important remaining questions that continue to be the focus of current international projects.

2010 ◽  
Vol 23 (3) ◽  
pp. 485-503 ◽  
Author(s):  
Kirsten L. Findell ◽  
Thomas L. Delworth

Abstract Climate model simulations run as part of the Climate Variability and Predictability (CLIVAR) Drought Working Group initiative were analyzed to determine the impact of three patterns of sea surface temperature (SST) anomalies on drought and pluvial frequency and intensity around the world. The three SST forcing patterns include a global pattern similar to the background warming trend, a pattern in the Pacific, and a pattern in the Atlantic. Five different global atmospheric models were forced by fixed SSTs to test the impact of these SST anomalies on droughts and pluvials relative to a climatologically forced control run. The five models generally yield similar results in the locations of drought and pluvial frequency changes throughout the annual cycle in response to each given SST pattern. In all of the simulations, areas with an increase in the mean drought (pluvial) conditions tend to also show an increase in the frequency of drought (pluvial) events. Additionally, areas with more frequent extreme events also tend to show higher intensity extremes. The cold Pacific anomaly increases drought occurrence in the United States and southern South America and increases pluvials in Central America and northern and central South America. The cold Atlantic anomaly increases drought occurrence in southern Central America, northern South America, and central Africa and increases pluvials in central South America. The warm Pacific and Atlantic anomalies generally lead to reversals of the drought and pluvial increases described with the corresponding cold anomalies. More modest impacts are seen in other parts of the world. The impact of the trend pattern is generally more modest than that of the two other anomaly patterns.


2016 ◽  
Vol 29 (22) ◽  
pp. 8083-8101 ◽  
Author(s):  
Allyson Rugg ◽  
Gregory R. Foltz ◽  
Renellys C. Perez

Abstract This study examines the causes of observed sea surface temperature (SST) anomalies in the tropical North Atlantic between 1982 and 2015. The emphasis is on the boreal winter and spring seasons, when tropical Atlantic SSTs project strongly onto the Atlantic meridional mode (AMM). Results from a composite analysis of satellite and reanalysis data show important forcing of SST anomalies by wind-driven changes in mixed layer depth and shortwave radiation between 5° and 10°N, in addition to the well-known positive wind–evaporation–SST and shortwave radiation–SST feedbacks between 5° and 20°N. Anomalous surface winds also drive pronounced thermocline depth anomalies of opposite signs in the eastern equatorial Atlantic and intertropical convergence zone (ITCZ; 2°–8°N). A major new finding is that there is strong event-to-event variability in the impact of thermocline depth on SST in the ITCZ region, in contrast to the more consistent relationship in the eastern equatorial Atlantic. Much stronger anomalies of meridional wind stress, thermocline depth, and vertical turbulent cooling are found in the ITCZ region during a negative AMM event in 2009 compared to a negative event in 2015 and a positive event in 2010, despite SST anomalies of similar magnitude in the early stages of each event. The larger anomalies in 2009 led to a much stronger and longer-lived event. Possible causes of the inconsistent relationship between thermocline depth and SST in the ITCZ region are discussed, including the preconditioning role of the winter cross-equatorial SST gradient.


2020 ◽  
Vol 33 (22) ◽  
pp. 9653-9672
Author(s):  
Shaobo Qiao ◽  
Meng Zou ◽  
Shankai Tang ◽  
Ho Nam Cheung ◽  
Haijing Su ◽  
...  

AbstractThe impact of the wintertime North Atlantic Oscillation (NAO) on the subsequent sea surface temperature (SST) anomalies over the tropical Atlantic has experienced obvious interdecadal changes during 1950–2015. During 1995–2015, the negative (positive) phase of the wintertime NAO favors positive (negative) SST anomalies over the tropical Atlantic in the subsequent spring–summer, whereas the NAO–SST connection is insignificant during 1970–94 and is confined to the northern tropical Atlantic (NTA) during 1950–69. Compared to 1970–94, the much stronger influence on the NTA SST during 1995–2015 and 1950–69 is associated with a southward shift of the southern boundary of the NAO. During 1995–2015, the inverted NAO-related warming of the tropical Atlantic consists of three stages: 1) the pronounced increase in SST over the subtropical North Atlantic (SNA) and the tropical South Atlantic (TSA) during December–January, 2) the pronounced increase in SST over the northwestern tropical Atlantic (NWTA) during February–April, and 3) the persistent warming over the tropical Atlantic during May–August. The increases in SST over the SNA and the TSA are attributed to significant positive latent heat flux anomalies via the wind–evaporation effect, which are connected by the suppressed regional Hadley circulation. Afterward, the associated anomalous downward motion over the NWTA persists into February–April, which induces more incoming shortwave radiation and results in a significant increase in the local SST via the cloud–radiation effect. In contrast, during 1950–69, due to the decreased interannual variability of the vertical motion over the NWTA, the anomalous downward branch aloft and the low-level cross-equatorial northwesterly winds associated with the inverted NAO are not evident, and thus the regions with an increase in SST are confined to the Northern Hemisphere.


2017 ◽  
Vol 30 (16) ◽  
pp. 6309-6328 ◽  
Author(s):  
Liping Zhang ◽  
Thomas L. Delworth ◽  
Liwei Jia

The average predictability time (APT) method is used to identify the most predictable components of decadal sea surface temperature (SST) variations over the Southern Ocean (SO) in a 4000-yr unforced control run of the GFDL CM2.1 model. The most predictable component shows significant predictive skill for periods as long as 20 years. The physical pattern of this variability has a uniform sign of SST anomalies over the SO, with maximum values over the Amundsen–Bellingshausen–Weddell Seas. Spectral analysis of the associated APT time series shows a broad peak on time scales of 70–120 years. This most predictable pattern is closely related to the mature phase of a mode of internal variability in the SO that is associated with fluctuations of deep ocean convection. The second most predictable component of SO SST is characterized by a dipole structure, with SST anomalies of one sign over the Weddell Sea and SST anomalies of the opposite sign over the Amundsen–Bellingshausen Seas. This component has significant predictive skill for periods as long as 6 years. This dipole mode is associated with a transition between phases of the dominant pattern of SO internal variability. The long time scales associated with variations in SO deep convection provide the source of the predictive skill of SO SST on decadal scales. These analyses suggest that if the SO deep convection in a numerical forecast model could be adequately initialized, the future evolution of SO SST and its associated climate impacts are potentially predictable.


2003 ◽  
Vol 16 (9) ◽  
pp. 1364-1377 ◽  
Author(s):  
Gaëlle de Coëtlogon ◽  
Claude Frankignoul

Abstract The impact of the seasonal variations of the mixed-layer depth on the persistence of sea surface temperature (SST) anomalies is studied in the North Atlantic, using observations. A significant recurrence of winter SST anomalies during the following winter occurs in most of the basin, but not in the subtropical area of strong subduction. When taking reemergence into account, the e-folding timescale of winter SST anomalies generally exceeds 1 yr, and is about 16 months for the dominant SST anomaly tripole. The influence of advection by the mean oceanic currents is investigated by allowing for a displacement of the maximum recurrent correlation and, alternatively, by considering the SST anomaly evolution along realistic mean displacement paths. Taking into account the nonlocality of the reemergence generally increases the wintertime persistence, most notably in the northern part of the domain. The passive response of the mixed layer to the atmospheric forcing thus has a red spectrum down to near-decadal frequencies.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 454
Author(s):  
Andrew R. Jakovlev ◽  
Sergei P. Smyshlyaev ◽  
Vener Y. Galin

The influence of sea-surface temperature (SST) on the lower troposphere and lower stratosphere temperature in the tropical, middle, and polar latitudes is studied for 1980–2019 based on the MERRA2, ERA5, and Met Office reanalysis data, and numerical modeling with a chemistry-climate model (CCM) of the lower and middle atmosphere. The variability of SST is analyzed according to Met Office and ERA5 data, while the variability of atmospheric temperature is investigated according to MERRA2 and ERA5 data. Analysis of sea surface temperature trends based on reanalysis data revealed that a significant positive SST trend of about 0.1 degrees per decade is observed over the globe. In the middle latitudes of the Northern Hemisphere, the trend (about 0.2 degrees per decade) is 2 times higher than the global average, and 5 times higher than in the Southern Hemisphere (about 0.04 degrees per decade). At polar latitudes, opposite SST trends are observed in the Arctic (positive) and Antarctic (negative). The impact of the El Niño Southern Oscillation phenomenon on the temperature of the lower and middle atmosphere in the middle and polar latitudes of the Northern and Southern Hemispheres is discussed. To assess the relative influence of SST, CO2, and other greenhouse gases’ variability on the temperature of the lower troposphere and lower stratosphere, numerical calculations with a CCM were performed for several scenarios of accounting for the SST and carbon dioxide variability. The results of numerical experiments with a CCM demonstrated that the influence of SST prevails in the troposphere, while for the stratosphere, an increase in the CO2 content plays the most important role.


2011 ◽  
Vol 11 (12) ◽  
pp. 6049-6062 ◽  
Author(s):  
X. Yue ◽  
H. Liao ◽  
H. J. Wang ◽  
S. L. Li ◽  
J. P. Tang

Abstract. Mineral dust aerosol can be transported over the nearby oceans and influence the energy balance at the sea surface. The role of dust-induced sea surface temperature (SST) responses in simulations of the climatic effect of dust is examined by using a general circulation model with online simulation of mineral dust and a coupled mixed-layer ocean model. Both the longwave and shortwave radiative effects of mineral dust aerosol are considered in climate simulations. The SST responses are found to be very influential on simulated dust-induced climate change, especially when climate simulations consider the two-way dust-climate coupling to account for the feedbacks. With prescribed SSTs and dust concentrations, we obtain an increase of 0.02 K in the global and annual mean surface air temperature (SAT) in response to dust radiative effects. In contrast, when SSTs are allowed to respond to radiative forcing of dust in the presence of the dust cycle-climate interactions, we obtain a global and annual mean cooling of 0.09 K in SAT by dust. The extra cooling simulated with the SST responses can be attributed to the following two factors: (1) The negative net (shortwave plus longwave) radiative forcing of dust at the surface reduces SST, which decreases latent heat fluxes and upward transport of water vapor, resulting in less warming in the atmosphere; (2) The positive feedback between SST responses and dust cycle. The dust-induced reductions in SST lead to reductions in precipitation (or wet deposition of dust) and hence increase the global burden of small dust particles. These small particles have strong scattering effects, which enhance the dust cooling at the surface and further reduce SSTs.


Sign in / Sign up

Export Citation Format

Share Document