scholarly journals Global Meteorological Drought: A Synthesis of Current Understanding with a Focus on SST Drivers of Precipitation Deficits

2016 ◽  
Vol 29 (11) ◽  
pp. 3989-4019 ◽  
Author(s):  
Siegfried D. Schubert ◽  
Ronald E. Stewart ◽  
Hailan Wang ◽  
Mathew Barlow ◽  
Ernesto H. Berbery ◽  
...  

Abstract Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST) anomalies, land surface feedbacks, and radiative forcings. The synthesis is primarily based on regionally focused articles submitted to the Global Drought Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales, the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia, Australia, and the Maritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India), the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, and central and eastern Canada stand out as regions with few SST-forced impacts on precipitation on interannual time scales. Decadal changes in SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation of the late 1990s “climate shifts” in the Pacific and Atlantic SST. Key remaining research challenges include (i) better quantification of unforced and forced atmospheric variability as well as land–atmosphere feedbacks, (ii) better understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought.

2004 ◽  
Vol 17 (23) ◽  
pp. 4498-4511 ◽  
Author(s):  
Michael Vellinga ◽  
Peili Wu

Abstract Variability of the thermohaline circulation (THC) has been analyzed in a long control simulation by the Met Office's Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3). It is shown that internal THC variability in the coupled climate system is concentrated at interannual and centennial time scales, with the centennial mode being dominant. Centennial oscillations of the THC can impact surface climate via an interhemispheric SST contrast of 0.1°C in the Tropics and more than 0.5°C in mid- and high latitudes. A mechanism is proposed based on detailed process analysis involving large-scale air–sea interaction on multidecadal time scales. Anomalous northward ocean heat transport associated with a strong phase of the Atlantic THC generates a cross-equatorial SST gradient. This causes the ITCZ to move to a more northerly position with increased strength. The extra rainfall resulting from the anomalous ITCZ imposes a freshwater flux and produces a salinity anomaly in the tropical North Atlantic. Such sustained salinity anomalies slowly propagate toward the subpolar North Atlantic at a lag of 5–6 decades. The accumulated low-salinity water lowers upper-ocean density, which causes the THC to slow down. The oscillation then enters the opposite phase.


2021 ◽  
Vol 14 (5) ◽  
pp. 2843-2866
Author(s):  
Elisa Ziegler ◽  
Kira Rehfeld

Abstract. Modeling the long-term transient evolution of climate remains a technical and scientific challenge. However, understanding and improving modeling of the long-term behavior of the climate system increases confidence in projected changes in the mid- to long-term future. Energy balance models (EBMs) provide simplified and computationally efficient descriptions of long timescales and allow large ensemble runs by parameterizing energy fluxes. In this way, they can be used to pinpoint periods and phenomena of interest. Here, we present TransEBM, an extended version of the two-dimensional energy balance model by Zhuang et al. (2017a). Transient CO2, solar insolation, orbital configuration, fixed ice coverage, and land–sea distribution are implemented as effective radiative forcings at the land surface. We show that the model is most sensitive to changes in CO2 and ice distribution, but the obliquity and land–sea mask have significant influence on modeled temperatures as well. We tune TransEBM to reproduce the 1960–1989 CE global mean temperature and the Equator-to-pole and seasonal temperature gradients of ERA-20CM reanalysis (Hersbach et al., 2015). The resulting latitudinal and seasonal temperature distributions agree well with reanalysis and the general circulation model (GCM) HadCM3 for a simulation of the past millennium (Bühler et al., 2020). TransEBM does not represent the internal variability of the ocean–atmosphere system, but non-deterministic elements and nonlinearity can be introduced through model restarts and randomized forcing. As the model facilitates long transient simulations, we envisage its use in exploratory studies of stochastic forcing and perturbed parameterizations, thus complementing studies with comprehensive GCMs.


2011 ◽  
Vol 24 (21) ◽  
pp. 5652-5670 ◽  
Author(s):  
Thierry Penduff ◽  
Mélanie Juza ◽  
Bernard Barnier ◽  
Jan Zika ◽  
William K. Dewar ◽  
...  

Abstract This paper evaluates in a realistic context the local contributions of direct atmospheric forcing and intrinsic oceanic processes on interannual sea level anomalies (SLAs). A ¼° global ocean–sea ice general circulation model, driven over 47 yr by the full range of atmospheric time scales, is quantitatively assessed against altimetry and shown to reproduce most observed features of the interannual SLA variability from 1993 to 2004. Comparing this simulation with a second driven only by the climatological annual cycle reveals that the intrinsic part of the total interannual SLA variance exceeds 40% over half of the open-ocean area and exceeds 80% over one-fifth of it. This intrinsic contribution is particularly strong in eddy-active regions (more than 70%–80% in the Southern Ocean and western boundary current extensions) as predicted by idealized studies, as well as within the 20°–35° latitude bands. The atmosphere directly forces most of the interannual SLA variance at low latitudes and in most midlatitude eastern basins, in particular north of about 40°N in the Pacific. The interannual SLA variance is almost entirely due to intrinsic processes south of the Antarctic Circumpolar Current in the Indian Ocean sector, while half of this variance is forced by the atmosphere north of it. The same simulations were performed and analyzed at 2° resolution as well: switching to this laminar regime yields a comparable forced variability (large-scale distribution and magnitude) but almost suppresses the intrinsic variability. This likely explains why laminar ocean models largely underestimate the interannual SLA variance.


2013 ◽  
Vol 26 (12) ◽  
pp. 4000-4016 ◽  
Author(s):  
Michael P. Byrne ◽  
Paul A. O’Gorman

Abstract Surface temperatures increase at a greater rate over land than ocean in simulations and observations of global warming. It has previously been proposed that this land–ocean warming contrast is related to different changes in lapse rates over land and ocean because of limited moisture availability over land. A simple theory of the land–ocean warming contrast is developed here in which lapse rates are determined by an assumption of convective quasi-equilibrium. The theory predicts that the difference between land and ocean temperatures increases monotonically as the climate warms or as the land becomes more arid. However, the ratio of differential warming over land and ocean varies nonmonotonically with temperature for constant relative humidities and reaches a maximum at roughly 290 K. The theory is applied to simulations with an idealized general circulation model in which the continental configuration and climate are varied systematically. The simulated warming contrast is confined to latitudes below 50° when climate is varied by changes in longwave optical thickness. The warming contrast depends on land aridity and is larger for zonal land bands than for continents with finite zonal extent. A land–ocean temperature contrast may be induced at higher latitudes by enforcing an arid land surface, but its magnitude is relatively small. The warming contrast is generally well described by the theory, although inclusion of a land–ocean albedo contrast causes the theory to overestimate the land temperatures. Extensions of the theory are discussed to include the effect of large-scale eddies on the extratropical thermal stratification and to account for warming contrasts in both surface air and surface skin temperatures.


2018 ◽  
Vol 9 (2) ◽  
pp. 497-506 ◽  
Author(s):  
Kazuhiro Oshima ◽  
Koto Ogata ◽  
Hotaek Park ◽  
Yoshihiro Tachibana

Abstract. River discharges from Siberia are a large source of freshwater into the Arctic Ocean, whereas the cause of the long-term variation in Siberian discharges is still unclear. The observed river discharges of the Lena in the east and the Ob in the west indicated different relationships in each of the epochs during the past 7 decades. The correlations between the two river discharges were negative during the 1980s to mid-1990s, positive during the mid-1950s to 1960s, and became weak after the mid-1990s. More long-term records of tree-ring-reconstructed discharges have also shown differences in the correlations in each of the epochs. It is noteworthy that the correlations obtained from the reconstructions tend to be negative during the past 2 centuries. Such tendency has also been obtained from precipitations in observations, and in simulations with an atmospheric general circulation model (AGCM) and fully coupled atmosphere–ocean GCMs conducted for the Fourth Assessment Report of the IPCC. The AGCM control simulation further demonstrated that an east–west seesaw pattern of summertime large-scale atmospheric circulation frequently emerges over Siberia as an atmospheric internal variability. This results in an opposite anomaly of precipitation over the Lena and Ob and the negative correlation. Consequently, the summertime atmospheric internal variability in the east–west seesaw pattern over Siberia is a key factor influencing the long-term variation in precipitation and river discharge, i.e., the water cycle in this region.


2007 ◽  
Vol 64 (9) ◽  
pp. 3296-3311 ◽  
Author(s):  
Edwin P. Gerber ◽  
Geoffrey K. Vallis

Abstract An idealized atmospheric general circulation model is used to investigate the factors controlling the time scale of intraseasonal (10–100 day) variability of the extratropical atmosphere. Persistence on these time scales is found in patterns of variability that characterize meridional vacillations of the extratropical jet. Depending on the degree of asymmetry in the model forcing, patterns take on similar properties to the zonal index, annular modes, and North Atlantic Oscillation. It is found that the time scale of jet meandering is distinct from the obvious internal model time scales, suggesting that interaction between synoptic eddies and the large-scale flow establish a separate, intraseasonal time scale. A mechanism is presented by which eddy heat and momentum transport couple to retard motion of the jet, slowing its meridional variation and thereby extending the persistence of zonal index and annular mode anomalies. The feedback is strong and quite sensitive to model parameters when the model forcing is zonally uniform. However, the time scale of jet variation drops and nearly all sensitivity to parameters is lost when zonal asymmetries, in the form of topography and thermal perturbations that approximate land–sea contrast, are introduced. A diagnostic on the zonal structure of the zonal index provides intuition on the physical nature of the index and annular modes and hints at why zonal asymmetries limit the eddy–mean flow interactions.


2013 ◽  
Vol 13 (11) ◽  
pp. 29263-29301 ◽  
Author(s):  
M. Butzin ◽  
M. Werner ◽  
V. Masson-Delmotte ◽  
C. Risi ◽  
C. Frankenberg ◽  
...  

Abstract. Global warming is associated with large increase in surface air temperature and precipitation in Siberia. Here, we apply the isotope-enhanced atmospheric general circulation model ECHAM5-wiso to investigate the variability of δ18O in West Siberian precipitation and the underlying mechanisms during the last fifty years, and to assess the potential of a recently opened monitoring station in Kourovka (57.04° N, 59.55° E) to successfully track large-scale water cycle and climate change in this area. Our model is constrained to atmospheric reanalysis fields to facilitate the comparison with precipitation δ18O from observations. In Russia, annual-mean model surface temperatures agree within ±1.5 °C with climatological data, while the model tends to overestimate precipitation by 10–20 mm month−1. Simulated precipitation δ18O shows a southwest to northeast decreasing pattern. The simulated annual-mean and seasonal δ18O results are in overall good agreement with observations from 15 Russian stations of the Global Network of Isotopes in Precipitation between 1970 and 2009. Annual-mean model results and measurements are highly correlated (r2~0.95) with a root mean square deviation of ±1‰. The model reproduces the seasonal variability of δ18O, which parallels the seasonal cycle of temperature, and the seasonal range from −25‰ in winter to −5‰ in summer. Analysing model results for the extended period 1960–2010, long-term increasing trends in temperature, precipitation and δ18O are detected in western Siberia. During the last 50 yr, winter temperatures have increased by 1.8 °C. Annual-mean precipitation rates have increased by 2–6 mm month−1 50 yr−1. Long-term trends of precipitation δ18O are also positive but at the detection limit (<1‰ 50 yr−1). Regional climate is characterized by strong interannual variability, which in winter is strongly related to the North Atlantic Oscillation. In ECHAM5-wiso, regional temperature is the predominant factor controlling δ18O variations on interannual to decadal time scales with slopes of about 0.5‰ °C−1. Focusing on Kourovka, the simulated evolution of temperature, δ18O and, to a smaller extent, precipitation during the last fifty years is synchronous with model results averaged over entire western Siberia, suggesting that this site will be representative to monitor future isotopic changes this region.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 690 ◽  
Author(s):  
Sungbo Shim ◽  
Jinwon Kim ◽  
Seong Soo Yum ◽  
Hannah Lee ◽  
Kyung-On Boo ◽  
...  

The effects of the emissions of anthropogenic greenhouse gases (GHGs), aerosols, and natural forcing on the summer-mean surface air temperature (TAS) in the East Asia (EA) land surface in the 20th century are analyzed using six-member coupled model inter-comparison project 5 (CMIP5) general circulation model (GCM) ensembles from five single-forcing simulations. The simulation with the observed GHG concentrations and aerosol emissions reproduces well the land-mean EA TAS trend characterized by warming periods in the early (1911–1940; P1) and late (1971–2000; P3) 20th century separated by a cooling period (1941–1970; P2). The warming in P1 is mainly due to the natural variability related to GHG increases and the long-term recovery from volcanic activities in late-19th/early-20th century. The cooling in P2 occurs as the combined cooling by anthropogenic aerosols and increased volcanic eruptions in the 1960s exceeds the warming by the GHG increases and the nonlinear interaction term. In P3, the combined warming by GHGs and the interaction term exceeds the cooling by anthropogenic aerosols to result in the warming. The SW forcing is not driving the TAS increase in P1/P3 as the shortwave (SW) forcing is heavily affected by the increased cloudiness and the longwave (LW) forcing dominates the SW forcing. The LW forcing to TAS cannot be separated from the LW response to TAS, preventing further analyses. The interaction among these forcing affects TAS via largely modifying the atmospheric water cycle, especially in P2 and P3. Key forcing terms on TAS such as the temperature advection related to large-scale circulation changes cannot be analyzed due to the lack of model data.


2020 ◽  
Author(s):  
Elisa Ziegler ◽  
Kira Rehfeld

Abstract. Modeling the long-term transient evolution of climate remains a technical and scientific challenge. However, understanding and improved modeling of the long-term behavior of the climate system increases confidence in projected changes in the mid- to long-term future. Energy balance models (EBMs) provide simplified and computationally efficient descriptions of long timescales and allow large ensemble runs by parameterizing energy fluxes. This way, they can be used to pinpoint periods and phenomena of interest. Here, we present an extended version of the two-dimensional energy balance model by Zhuang et al. (2017a). Transient CO2, solar insolation, orbital configuration, fixed ice coverage and land-sea distribution are implemented as effective radiative forcings at the land surface. We show that the model is most sensitive to changes in CO2 and ice distribution, but the obliquity and land-sea mask have significant influence on modeled temperatures as well. We tune the new model to reproduce the 1960–89 C.E. global mean temperature, equator-to-pole, and seasonal temperature gradient of the ERA20CM reanalysis (Hersbach et al., 2015). The resulting latitudinal and seasonal temperature distributions agree well with reanalysis and the general circulation model (GCM) HadCM3 for a simulation of the past millennium. We find that the EBM lacks internal climatic variability. This is attributed mostly to its reduced descriptions of heat transport and the hydrological cycle. As the model facilitates long transient simulations, we envisage its use in exploratory studies of stochastic forcing and perturbed parameterizations, thus complementing studies with comprehensive GCMs.


Sign in / Sign up

Export Citation Format

Share Document