scholarly journals Effects of Anthropogenic and Natural Forcings on the Summer Temperature Variations in East Asia during the 20th Century

Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 690 ◽  
Author(s):  
Sungbo Shim ◽  
Jinwon Kim ◽  
Seong Soo Yum ◽  
Hannah Lee ◽  
Kyung-On Boo ◽  
...  

The effects of the emissions of anthropogenic greenhouse gases (GHGs), aerosols, and natural forcing on the summer-mean surface air temperature (TAS) in the East Asia (EA) land surface in the 20th century are analyzed using six-member coupled model inter-comparison project 5 (CMIP5) general circulation model (GCM) ensembles from five single-forcing simulations. The simulation with the observed GHG concentrations and aerosol emissions reproduces well the land-mean EA TAS trend characterized by warming periods in the early (1911–1940; P1) and late (1971–2000; P3) 20th century separated by a cooling period (1941–1970; P2). The warming in P1 is mainly due to the natural variability related to GHG increases and the long-term recovery from volcanic activities in late-19th/early-20th century. The cooling in P2 occurs as the combined cooling by anthropogenic aerosols and increased volcanic eruptions in the 1960s exceeds the warming by the GHG increases and the nonlinear interaction term. In P3, the combined warming by GHGs and the interaction term exceeds the cooling by anthropogenic aerosols to result in the warming. The SW forcing is not driving the TAS increase in P1/P3 as the shortwave (SW) forcing is heavily affected by the increased cloudiness and the longwave (LW) forcing dominates the SW forcing. The LW forcing to TAS cannot be separated from the LW response to TAS, preventing further analyses. The interaction among these forcing affects TAS via largely modifying the atmospheric water cycle, especially in P2 and P3. Key forcing terms on TAS such as the temperature advection related to large-scale circulation changes cannot be analyzed due to the lack of model data.

2016 ◽  
Vol 29 (11) ◽  
pp. 3989-4019 ◽  
Author(s):  
Siegfried D. Schubert ◽  
Ronald E. Stewart ◽  
Hailan Wang ◽  
Mathew Barlow ◽  
Ernesto H. Berbery ◽  
...  

Abstract Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST) anomalies, land surface feedbacks, and radiative forcings. The synthesis is primarily based on regionally focused articles submitted to the Global Drought Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales, the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia, Australia, and the Maritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India), the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, and central and eastern Canada stand out as regions with few SST-forced impacts on precipitation on interannual time scales. Decadal changes in SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation of the late 1990s “climate shifts” in the Pacific and Atlantic SST. Key remaining research challenges include (i) better quantification of unforced and forced atmospheric variability as well as land–atmosphere feedbacks, (ii) better understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought.


2013 ◽  
Vol 26 (12) ◽  
pp. 4000-4016 ◽  
Author(s):  
Michael P. Byrne ◽  
Paul A. O’Gorman

Abstract Surface temperatures increase at a greater rate over land than ocean in simulations and observations of global warming. It has previously been proposed that this land–ocean warming contrast is related to different changes in lapse rates over land and ocean because of limited moisture availability over land. A simple theory of the land–ocean warming contrast is developed here in which lapse rates are determined by an assumption of convective quasi-equilibrium. The theory predicts that the difference between land and ocean temperatures increases monotonically as the climate warms or as the land becomes more arid. However, the ratio of differential warming over land and ocean varies nonmonotonically with temperature for constant relative humidities and reaches a maximum at roughly 290 K. The theory is applied to simulations with an idealized general circulation model in which the continental configuration and climate are varied systematically. The simulated warming contrast is confined to latitudes below 50° when climate is varied by changes in longwave optical thickness. The warming contrast depends on land aridity and is larger for zonal land bands than for continents with finite zonal extent. A land–ocean temperature contrast may be induced at higher latitudes by enforcing an arid land surface, but its magnitude is relatively small. The warming contrast is generally well described by the theory, although inclusion of a land–ocean albedo contrast causes the theory to overestimate the land temperatures. Extensions of the theory are discussed to include the effect of large-scale eddies on the extratropical thermal stratification and to account for warming contrasts in both surface air and surface skin temperatures.


2017 ◽  
Vol 30 (22) ◽  
pp. 8929-8949 ◽  
Author(s):  
Geeta G. Persad ◽  
David J. Paynter ◽  
Yi Ming ◽  
V. Ramaswamy

East Asia has some of the largest concentrations of absorbing aerosols globally, and these, along with the region’s scattering aerosols, have both reduced the amount of solar radiation reaching Earth’s surface regionally (solar dimming) and increased shortwave absorption within the atmosphere, particularly during the peak months of the East Asian summer monsoon (EASM). This study analyzes how atmospheric absorption and surface solar dimming compete in driving the response of regional summertime climate to anthropogenic aerosols, which dominates, and why—issues of particular importance for predicting how East Asian climate will respond to projected changes in absorbing and scattering aerosol emissions in the future. These questions are probed in a state-of-the-art general circulation model using a combination of realistic and novel idealized aerosol perturbations that allow analysis of the relative influence of absorbing aerosols’ atmospheric and surface-driven impacts on regional circulation and climate. Results show that even purely absorption-driven dimming decreases EASM precipitation by cooling the land surface, counteracting climatological land–sea contrast and reducing ascending atmospheric motion and onshore winds, despite the associated positive top-of-the-atmosphere regional radiative forcing. Absorption-driven atmospheric heating does partially offset the precipitation and surface evaporation reduction from surface dimming, but the overall response to aerosol absorption more closely resembles the response to its surface dimming than to its atmospheric heating. These findings provide a novel decomposition of absorbing aerosol’s impacts on regional climate and demonstrate that the response cannot be expected to follow the sign of absorption’s top-of-the-atmosphere or even atmospheric radiative perturbation.


2015 ◽  
Vol 15 (15) ◽  
pp. 8717-8738 ◽  
Author(s):  
V. Sant ◽  
R. Posselt ◽  
U. Lohmann

Abstract. A new parameterization with three prognostic liquid water classes was implemented into the general circulation model (GCM) ECHAM5 with the aerosol module HAM in order to improve the global representation of rain formation in marine stratiform clouds. The additionally introduced drizzle class improves the physical representation of the droplet spectrum and, more importantly, improves the microphysical processes relevant for precipitation formation compared to the standard parameterization. In order to avoid a mismatch of the liquid and ice phase, a prognostic treatment of snow has been introduced too. This has a significant effect on the amount and altitude of ice clouds, which in turn affects not only the in- and outgoing radiation but also the parameterized collection rates. With the introduction of a prognostic precipitation scheme, a more realistic representation of both liquid and ice phase large-scale precipitation is achieved compared to a diagnostic treatment. An encouraging finding is that with the prognostic treatment the increase of the liquid water path in response to anthropogenic aerosols is reduced by about 25 %. Although the total net radiative forcing is decreased from −1.3±0.3 to −1.6±0.3 W m−2 from the control to the prognostic model version, the difference is within the interannual variability. Altogether the results suggest that the treatment of precipitation in global circulation models has not only a significant influence on the phase of clouds and their conversion rates, but also hints towards uncertainties related to a prognostic precipitation scheme.


2015 ◽  
Vol 16 ◽  
pp. 36-39
Author(s):  
Narayan P. Gautam ◽  
Manohar Arora

Climate change refers to a change in a state of the climate and it is one of the emerging issues in the 21st century. General Circulation Model (GCM) represents physical processes in the atmosphere, ocean, cryosphere and land surface. It is one of the advanced tools for simulating the response of the global climate system to increasing greenhouse gas (GHG) concentrations. The application of GCMs and its downscaling outputs helps to fill up the gap existing between large-scale and local-scale variables. This study clearly showed that GCM downscaling has been increasingly applied to the study of climate change in many parts of the world including the Indian sub-continent and their results are utilized to enhance planning and management purposes. DOI: http://dx.doi.org/10.3126/hn.v16i0.12222         HYDRO Nepal  Journal of Water Energy and Environment Issue. 16, 2015, January Page: 36-39 Upload date: March 1, 2015 


Ocean Science ◽  
2012 ◽  
Vol 8 (2) ◽  
pp. 143-159 ◽  
Author(s):  
S. Cailleau ◽  
J. Chanut ◽  
J.-M. Lellouche ◽  
B. Levier ◽  
C. Maraldi ◽  
...  

Abstract. The regional ocean operational system remains a key element in downscaling from large scale (global or basin scale) systems to coastal ones. It enables the transition between systems in which the resolution and the resolved physics are quite different. Indeed, coastal applications need a system to predict local high frequency events (inferior to the day) such as storm surges, while deep sea applications need a system to predict large scale lower frequency ocean features. In the framework of the ECOOP project, a regional system for the Iberia-Biscay-Ireland area has been upgraded from an existing V0 version to a V2. This paper focuses on the improvements from the V1 system, for which the physics are close to a large scale basin system, to the V2 for which the physics are more adapted to shelf and coastal issues. Strong developments such as higher regional physics resolution in the NEMO Ocean General Circulation Model for tides, non linear free surface and adapted vertical mixing schemes among others have been implemented in the V2 version. Thus, regional thermal fronts due to tidal mixing now appear in the latest version solution and are quite well positioned. Moreover, simulation of the stratification in shelf areas is also improved in the V2.


1986 ◽  
Vol 67 (2) ◽  
pp. 138-144 ◽  
Author(s):  
Jean-Claude André ◽  
Jean-Paul Goutorbe ◽  
Alain Perrier

The HAPEX-MOBILHY program is aimed at studying the hydrological budget and evaporation flux at the scale of a GCM (general circulation model) grid square, i.e., 104 km2. Different surface and subsurface networks will be operated during the year 1986, to measure and monitor soil moisture, surface-energy budget and surface hydrology, as well as atmospheric properties. A two-and-a-half-month special observing period will allow for detailed measurements of atmospheric fluxes and for intensive remote sensing of surface properties using well-instrumented aircraft. The main objective of the program, for which guest investigations are strongly encouraged, is to provide a data base against which parameterization schemes for the land-surface water budget will be tested and developed.


2007 ◽  
Vol 4 (5) ◽  
pp. 3413-3440 ◽  
Author(s):  
E. P. Maurer ◽  
H. G. Hidalgo

Abstract. Downscaling of climate model data is essential to most impact analysis. We compare two methods of statistical downscaling to produce continuous, gridded time series of precipitation and surface air temperature at a 1/8-degree (approximately 140 km² per grid cell) resolution over the western U.S. We use NCEP/NCAR Reanalysis data from 1950–1999 as a surrogate General Circulation Model (GCM). The two methods included are constructed analogues (CA) and a bias correction and spatial downscaling (BCSD), both of which have been shown to be skillful in different settings, and BCSD has been used extensively in hydrologic impact analysis. Both methods use the coarse scale Reanalysis fields of precipitation and temperature as predictors of the corresponding fine scale fields. CA downscales daily large-scale data directly and BCSD downscales monthly data, with a random resampling technique to generate daily values. The methods produce comparable skill in producing downscaled, gridded fields of precipitation and temperatures at a monthly and seasonal level. For daily precipitation, both methods exhibit some skill in reproducing both observed wet and dry extremes and the difference between the methods is not significant, reflecting the general low skill in daily precipitation variability in the reanalysis data. For low temperature extremes, the CA method produces greater downscaling skill than BCSD for fall and winter seasons. For high temperature extremes, CA demonstrates higher skill than BCSD in summer. We find that the choice of most appropriate downscaling technique depends on the variables, seasons, and regions of interest, on the availability of daily data, and whether the day to day correspondence of weather from the GCM needs to be reproduced for some applications. The ability to produce skillful downscaled daily data depends primarily on the ability of the climate model to show daily skill.


2011 ◽  
Vol 11 (8) ◽  
pp. 24085-24125 ◽  
Author(s):  
E. M. Leibensperger ◽  
L. J. Mickley ◽  
D. J. Jacob ◽  
W.-T. Chen ◽  
J. H. Seinfeld ◽  
...  

Abstract. We use the GEOS-Chem chemical transport model combined with the GISS general circulation model to calculate the aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950–2050 period, based on historical emission inventories and future projections from the IPCC A1B scenario. The aerosol simulation is evaluated with observed spatial distributions and 1980–2010 trends of aerosol concentrations and wet deposition in the contiguous US. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that it peaked in 1970–1990, with values over the eastern US (east of 100° W) of −2.0 W m−2 for direct forcing including contributions from sulfate (−2.0 W m−2), nitrate (−0.2 W m−2), organic carbon (−0.2 W m−2), and black carbon (+0.4 W m−2). The aerosol indirect effect is of comparable magnitude to the direct forcing. We find that the forcing declined sharply from 1990 to 2010 (by 0.8 W m−2 direct and 1.0 W m−2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60 % from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources may have already been realized by 2010, however some additional warming is expected through 2020. The small positive radiative forcing from US BC emissions (+0.3 W m−2 over the eastern US in 2010) suggests that an emission control strategy focused on BC would have only limited climate benefit.


Sign in / Sign up

Export Citation Format

Share Document