scholarly journals Tropical Cyclones Downscaled from Simulations with Very High Carbon Dioxide Levels

2017 ◽  
Vol 30 (2) ◽  
pp. 649-667 ◽  
Author(s):  
Robert L. Korty ◽  
Kerry A. Emanuel ◽  
Matthew Huber ◽  
Ryan A. Zamora

A method to simulate thousands of tropical cyclones using output from a global climate model is applied to simulations that span very high surface temperatures forced with high levels of carbon dioxide (CO2). The climatology of the storms downscaled from a simulation with modern-day conditions is compared to that of events downscaled from two other simulations featuring 8 and 32 times preindustrial-era levels of CO2. Storms shift poleward with warming: genesis locations and track densities increase in subtropical and higher latitudes, and power dissipation increases poleward of 20°S and 30°N. The average latitude at which storms reach their maximum intensity shifts poleward by more than 1.5° latitude in the 8 × CO2 experiment and by more than 7° latitude in the 32 × CO2 case. Storms live longer and are more numerous in both of the warmer climates. These increases come largely from an expansion of the area featuring favorable conditions into subtropics and midlatitudes, with some regions of the Arctic having the thermodynamic conditions necessary to sustain systems in the hottest case. Storms of category 5 intensity are 52% more frequent in the 8 × CO2 experiment but 40% less so in the 32 × CO2 case, largely owing to a substantial decline in low-latitude activity associated with increases in a normalized measure of wind shear called the ventilation index. Changes in genesis and track densities align well with differences in the ventilation index, and environmental conditions become substantially more favorable poleward of about 20° latitude in the warmer climates.

2021 ◽  
pp. 1-47

Abstract Key processes associated with the leading intraseasonal variability mode of wintertime surface air temperature (SAT) over Eurasia and the Arctic region are investigated in this study. Characterized by a dipole distribution in SAT anomalies centered over north Eurasia and the Arctic, respectively, and coherent temperature anomalies vertically extending from the surface to 300hPa, this leading intraseasonal SAT mode and associated circulation have pronounced influences on global surface temperature anomalies including the East Asian winter monsoon region. By taking advantage of realistic simulations of the intraseasonal SAT mode in a global climate model, it is illustrated that temperature anomalies in the troposphere associated with the leading SAT mode are mainly due to dynamic processes, especially via the horizontal advection of winter mean temperature by intraseasonal circulation. While the cloud-radiative feedback is not critical in sustaining the temperature variability in the troposphere, it is found to play a crucial role in coupling temperature anomalies at the surface and in the free-atmosphere through anomalous surface downward longwave radiation. The variability in clouds associated with the intraseasonal SAT mode is closely linked to moisture anomalies generated by similar advective processes as for temperature anomalies. Model experiments suggest that this leading intraseasonal SAT mode can be sustained by internal atmospheric processes in the troposphere over the mid-to-high latitudes by excluding forcings from Arctic sea ice variability, tropical convective variability, and the stratospheric processes.


2014 ◽  
Vol 119 (13) ◽  
pp. 8169-8188 ◽  
Author(s):  
Paul Glantz ◽  
Adam Bourassa ◽  
Andreas Herber ◽  
Trond Iversen ◽  
Johannes Karlsson ◽  
...  

2007 ◽  
Vol 20 (24) ◽  
pp. 5946-5961 ◽  
Author(s):  
Jan Sedlacek ◽  
Jean-François Lemieux ◽  
Lawrence A. Mysak ◽  
L. Bruno Tremblay ◽  
David M. Holland

Abstract The granular sea ice model (GRAN) from Tremblay and Mysak is converted from Cartesian to spherical coordinates. In this conversion, the metric terms in the divergence of the deviatoric stress and in the strain rates are included. As an application, the GRAN is coupled to the global Earth System Climate Model from the University of Victoria. The sea ice model is validated against standard datasets. The sea ice volume and area exported through Fram Strait agree well with values obtained from in situ and satellite-derived estimates. The sea ice velocity in the interior Arctic agrees well with buoy drift data. The thermodynamic behavior of the sea ice model over a seasonal cycle at one location in the Beaufort Sea is validated against the Surface Heat Budget of the Arctic Ocean (SHEBA) datasets. The thermodynamic growth rate in the model is almost twice as large as the observed growth rate, and the melt rate is 25% lower than observed. The larger growth rate is due to thinner ice at the beginning of the SHEBA period and the absence of internal heat storage in the ice layer in the model. The simulated lower summer melt is due to the smaller-than-observed surface melt.


2020 ◽  
Author(s):  
Richard Bintanja ◽  
Karin van der Wiel ◽  
Eveline van der Linden ◽  
Jesse Reusen ◽  
Linda Bogerd ◽  
...  

<p>The Arctic region is projected to experience amplified warming as well as strongly increasing precipitation rates. Equally important to trends in the mean climate are changes in interannual variability, but changes in precipitation fluctuations are highly uncertain and the associated processes unknown. Here we use various state-of-the-art global climate model simulations to show that interannual variability of Arctic precipitation will likely increase markedly (up to 40% over the 21<sup>st</sup> century), especially in summer. This can be attributed to increased poleward atmospheric moisture transport variability associated with enhanced moisture content, possibly modulated by atmospheric dynamics. Because both the means and variability of Arctic precipitation will increase, years/seasons with excessive precipitation will occur more often, as will the associated impacts.</p>


2011 ◽  
Vol 11 (2) ◽  
pp. 6805-6843 ◽  
Author(s):  
G. B. Hedegaard ◽  
A. Gross ◽  
J. H. Christensen ◽  
W. May ◽  
H. Skov ◽  
...  

Abstract. The ozone chemistry over three centuries has been simulated based on climate prediction from a global climate model and constant anthropogenic emissions in order to separate out the effects on air pollution from climate change. Four decades in different centuries has been simulated using the chemistry version of the atmospheric long-range transport model; the Danish Eulerian Hemispheric Model (DEHM) forced with meteorology predicted by the ECHAM5/MPI-OM coupled Atmosphere-Ocean General Circulation Model. The largest changes in both meteorology, ozone and its precursors is found in the 21st century, however, also significant changes are found in the 22nd century. At surface level the ozone concentration is predicted to increase due to climate change in the areas where substantial amounts of ozone precursors are emitted. Elsewhere a significant decrease is predicted at the surface. In the free troposphere a general increase is found in the entire Northern Hemisphere except in the tropics, where the ozone concentration is decreasing. In the Arctic the ozone concentration will increase in the entire air column, which most likely is due to changes in transport. The change in temperature, humidity and the naturally emitted Volatile Organic Compounds (VOCs) are governing with respect to changes in ozone both in the past, present and future century.


2017 ◽  
Vol 30 (24) ◽  
pp. 9999-10017 ◽  
Author(s):  
Hansi K. A. Singh ◽  
Cecilia M. Bitz ◽  
Aaron Donohoe ◽  
Philip J. Rasch

Numerical water tracers implemented in a global climate model are used to study how polar hydroclimate responds to CO2-induced warming from a source–receptor perspective. Although remote moisture sources contribute substantially more to polar precipitation year-round in the mean state, an increase in locally sourced moisture is crucial to the winter season polar precipitation response to greenhouse gas forcing. In general, the polar hydroclimate response to CO2-induced warming is strongly seasonal: over both the Arctic and Antarctic, locally sourced moisture constitutes a larger fraction of the precipitation in winter, while remote sources become even more dominant in summer. Increased local evaporation in fall and winter is coincident with sea ice retreat, which greatly augments local moisture sources in these seasons. In summer, however, larger contributions from more remote moisture source regions are consistent with an increase in moisture residence times and a longer moisture transport length scale, which produces a robust hydrologic cycle response to CO2-induced warming globally. The critical role of locally sourced moisture in the hydrologic cycle response of both the Arctic and Antarctic is distinct from controlling factors elsewhere on the globe; for this reason, great care should be taken in interpreting polar isotopic proxy records from climate states unlike the present.


2020 ◽  
Author(s):  
Ming Zhao

<p>Atmospheric rivers (ARs) are narrow, elongated, synoptic jets of water vapor that play important roles in the global water cycle and regional weather and climate extremes. Accurate climate projections of high impact global severe flood and drought events hinge on the climate models' ability to simulate and predict the AR phenomenon. This presentation will provide a systematic evaluation of the AR statistics and characteristics simulated by the GFDL new generation high resolution global climate model participating in the CMIP6 High Resolution Model Intercomparison Project (HiResMIP). The analyses include the historical period (1950-2014) compared against the ERA-Interim reanalysis results as well as future projections under global warming scenarios. The AR characteristics such as the spatial distribution, frequency, and intensity are explored in conjunction with large-scale circulation patterns such as the El Niño–Southern Oscillation, the Arctic Oscillation, and the Pacific-North-American teleconnections pattern. Potential changes in AR characteristics with global warming scenarios and their implications to weather and climate extremes will be discussed.</p>


2016 ◽  
Vol 29 (11) ◽  
pp. 4137-4153 ◽  
Author(s):  
Hansi K. A. Singh ◽  
Cecilia M. Bitz ◽  
Dargan M. W. Frierson

Abstract A global climate model is used to study the effect of flattening the orography of the Antarctic Ice Sheet on climate. A general result is that the Antarctic continent and the atmosphere aloft warm, while there is modest cooling globally. The large local warming over Antarctica leads to increased outgoing longwave radiation, which drives anomalous southward energy transport toward the continent and cooling elsewhere. Atmosphere and ocean both anomalously transport energy southward in the Southern Hemisphere. Near Antarctica, poleward energy and momentum transport by baroclinic eddies strengthens. Anomalous southward cross-equatorial energy transport is associated with a northward shift in the intertropical convergence zone. In the ocean, anomalous southward energy transport arises from a slowdown of the upper cell of the oceanic meridional overturning circulation and a weakening of the horizontal ocean gyres, causing sea ice in the Northern Hemisphere to expand and the Arctic to cool. Comparison with a slab-ocean simulation confirms the importance of ocean dynamics in determining the climate system response to Antarctic orography. This paper concludes by briefly presenting a discussion of the relevance of these results to climates of the past and to future climate scenarios.


Sign in / Sign up

Export Citation Format

Share Document