scholarly journals The Role of Tropical Interbasin SST Gradients in Forcing Walker Circulation Trends

2017 ◽  
Vol 30 (2) ◽  
pp. 499-508 ◽  
Author(s):  
Lei Zhang ◽  
Kristopher B. Karnauskas

The effects of externally forced tropical sea surface temperature (SST) anomalies on long-term Walker circulation changes are investigated through numerical atmospheric general circulation model (AGCM) experiments. In response to the observed tropics-wide SST trend, which exhibits a prominent interbasin warming contrast (IBWC) with smaller warming in the Pacific than the Indian and Atlantic Oceans that includes a weak La Niña–like pattern in the equatorial Pacific, pronounced low-level easterly anomalies emerge over the equatorial Pacific. Through sensitivity experiments, the intensification of the Pacific trade winds (PTWs) is attributable to the IBWC, whereas the slightly enhanced zonal SST gradient within the equatorial Pacific plays a small role relative to the observed IBWC. It is further demonstrated that the greater Indian Ocean warming forces low-level easterly anomalies over the entire equatorial Pacific, while the greater tropical Atlantic warming-driven enhancement of PTWs is located over the central equatorial Pacific. In contrast to observations, a negligible IBWC emerges in the tropical SST trends of CMIP5 historical simulations due to a strong El Niño–like warming in the tropical Pacific. Lacking the observed IBWC (and the observed enhancement of the zonal SST gradient within the equatorial Pacific), the PTWs in the CMIP5 ensemble can only weaken.

2018 ◽  
Vol 31 (10) ◽  
pp. 3943-3958 ◽  
Author(s):  
G. Srinivas ◽  
Jasti S. Chowdary ◽  
Yu Kosaka ◽  
C. Gnanaseelan ◽  
Anant Parekh ◽  
...  

Abstract This study discusses the impact of the Pacific–Japan (PJ) pattern on Indian summer monsoon (ISM) rainfall and its possible physical linkages through coupled and uncoupled pathways. Empirical orthogonal function analysis of 850-hPa relative vorticity over the western North Pacific (WNP) is used to extract the PJ pattern as the leading mode of circulation variability. The partial correlation analysis of the leading principal component reveals that the positive PJ pattern, which features anticyclonic and cyclonic low-level circulation anomalies over the tropical WNP and around Japan respectively, enhances the rainfall over the southern and northern parts of India. The northwestward propagating Rossby waves, in response to intensified convection over the Maritime Continent reinforced by low-level convergence in the southern flank of westward extended tropical WNP anticyclone, increase rainfall over southern peninsular India. Meanwhile, the anomalous moisture transport from the warm Bay of Bengal due to anomalous southerlies at the western edge of the low-level anticyclone extending from the tropical WNP helps to enhance the rainfall over northern India. The atmospheric general circulation model forced with climatological sea surface temperature confirms this atmospheric pathway through the westward propagating Rossby waves. Furthermore, the north Indian Ocean (NIO) warming induced by easterly wind anomalies along the southern periphery of the tropical WNP–NIO anticyclone enhances local convection, which in turn feeds back to the WNP convection anomalies. This coupled nature via interbasin feedback between the PJ pattern and NIO is confirmed using coupled model sensitivity experiments. These results are important in identifying new sources of ISM variability/predictability on the interannual time scale.


2018 ◽  
Vol 31 (6) ◽  
pp. 2197-2216 ◽  
Author(s):  
Jian Zheng ◽  
Faming Wang ◽  
Michael A. Alexander ◽  
Mengyang Wang

Previous studies have indicated that a sea surface temperature anomaly (SSTA) dipole in the subtropical South Pacific (SPSD), which peaks in austral summer (January–March), is dominated by thermodynamic processes. Observational analyses and numerical experiments were used to investigate the influence of SPSD mode on the equatorial Pacific. The model is an atmospheric general circulation model coupled to a reduced-gravity ocean model. An SPSD-like SSTA was imposed on 1 March, after which the model was free to evolve until the end of the year. The coupled model response showed that warm SSTAs extend toward the equator with northwesterly wind anomalies and then grow to El Niño–like anomalies by the end of the year. SPSD forcing weakens southeasterly trade winds and propagates warm SSTAs toward the equator through wind–evaporation–SST (WES) feedback. Meanwhile, relaxation of trade winds in the eastern equatorial Pacific depresses the thermocline and upwelling. Eastward anomalous currents near the equator cause warm horizontal advection in the central Pacific. Further experiments showed that thermodynamic coupling mainly acts on but is not essential for SSTA propagation, either from the subtropics to the equator or westward along the equator, while oceanic dynamic coupling alone also appears to be able to initiate anomalies on the equator and plays a critical role in SSTA growth in the tropical Pacific. This is consistent with observational analyses, which indicated that influence of WES feedback on SSTA propagation associated with the SPSD is limited. Finally, the warm pole close to the equator plays the dominant role in inducing the El Niño–like anomalies.


2015 ◽  
Vol 28 (24) ◽  
pp. 9909-9917 ◽  
Author(s):  
Zhen-Qiang Zhou ◽  
Shang-Ping Xie

Abstract Climate models suffer from long-standing biases, including the double intertropical convergence zone (ITCZ) problem and the excessive westward extension of the equatorial Pacific cold tongue. An atmospheric general circulation model is used to investigate how model biases in the mean state affect the projection of tropical climate change. The model is forced with a pattern of sea surface temperature (SST) increase derived from a coupled simulation of global warming but uses an SST climatology derived from either observations or a coupled historical simulation. The comparison of the experiments reveals that the climatological biases have important impacts on projected changes in the tropics. Specifically, during February–April when the climatological ITCZ displaces spuriously into the Southern Hemisphere, the model overestimates (underestimates) the projected rainfall increase in the warmer climate south (north) of the equator over the eastern Pacific. Furthermore, the global warming–induced Walker circulation slowdown is biased weak in the projection using coupled model climatology, suggesting that the projection of the reduced equatorial Pacific trade winds may also be underestimated. This is related to the bias that the climatological Walker circulation is too weak in the model, which is in turn due to a too-weak mean SST gradient in the zonal direction. The results highlight the importance of improving the climatological simulation for more reliable projections of regional climate change.


2020 ◽  
Vol 33 (23) ◽  
pp. 10073-10095
Author(s):  
Ingo Richter ◽  
Ping Chang ◽  
Xue Liu

Statistical prediction of tropical sea surface temperatures (SSTs) is performed using linear inverse models (LIMs) that are constructed from both observations and general circulation model (GCM) output of SST. The goals are to establish a baseline for tropical SST predictions, to examine the extent to which the skill of a GCM-derived LIM is indicative of that GCM’s skill in forecast mode, and to examine the linkages between mean state bias and prediction skill. The observation-derived LIM is more skillful than a simple persistence forecasts in most regions. Its skill also compares well with some GCM forecasts except in the equatorial Pacific, where the GCMs are superior. The observation-derived LIM is matched or even outperformed by the GCM-derived LIMs, which may be related to the longer data record available for GCMs. The GCM-derived LIMs provide a fairly good measure for the skill achieved by their parent GCMs in forecast mode. In some cases, the skill of the LIM is actually superior to that of its parent GCM, indicating that the GCM predictions may suffer from initialization problems. A weak-to-moderate relation exists between model mean state error and prediction skill in some regions. An example is the eastern equatorial Atlantic, where an erroneously deep thermocline reduces SST variability, which in turn affects prediction skill. Another example is the equatorial Pacific, where skill appears to be linked to cold SST biases in the western tropical Pacific, which may reduce the strength of air–sea coupling.


2017 ◽  
Vol 31 (1) ◽  
pp. 81-97 ◽  
Author(s):  
Elina Plesca ◽  
Verena Grützun ◽  
Stefan A. Buehler

Abstract The tropical overturning circulations are likely weakening under increased CO2 forcing. However, insufficient understanding of the circulations’ dynamics diminishes the full confidence in such a response. Based on a CMIP5 idealized climate experiment, this study investigates the changes in the Pacific Walker circulation under anthropogenic forcing and the sensitivity of its weakening response to internal variability, general circulation model (GCM) configuration, and indexing method. The sensitivity to internal variability is analyzed by using a 68-member ensemble of the MPI-ESM-LR model, and the influence of model physics is analyzed by using the 28-member CMIP5 ensemble. Three simple circulation indices—based on mean sea level pressure, 500-hPa vertical velocity, and 200-hPa velocity potential—are computed for each member of the two ensembles. The study uses the output of the CMIP5 idealized transient climate simulations with 1% yr−1 CO2 increase from preindustrial level, and investigates the detected circulation response until the moment of CO2 doubling (70 yr). Depending on the indexing method, it is found that 50%–93% of the MPI-ESM-LR and 54%–75% of the CMIP5 ensemble members project significant negative trends in the circulation’s intensity. This large spread in the ensembles reduces the confidence that a weakening circulation is a robust feature of climate change. Furthermore, the similar magnitude of the spread in both ensembles shows that the Walker circulation response is strongly influenced by natural variability, even over a 70-yr period.


2006 ◽  
Vol 19 (9) ◽  
pp. 1802-1819 ◽  
Author(s):  
Shuanglin Li ◽  
Martin P. Hoerling ◽  
Shiling Peng ◽  
Klaus M. Weickmann

Abstract The leading pattern of Northern Hemisphere winter height variability exhibits an annular structure, one related to tropical west Pacific heating. To explore whether this pattern can be excited by tropical Pacific SST variations, an atmospheric general circulation model coupled to a slab mixed layer ocean is employed. Ensemble experiments with an idealized SST anomaly centered at different longitudes on the equator are conducted. The results reveal two different response patterns—a hemispheric pattern projecting on the annular mode and a meridionally arched pattern confined to the Pacific–North American sector, induced by the SST anomaly in the west and the east Pacific, respectively. Extratropical air–sea coupling enhances the annular component of response to the tropical west Pacific SST anomalies. A diagnosis based on linear dynamical models suggests that the two responses are primarily maintained by transient eddy forcing. In both cases, the model transient eddy forcing response has a maximum near the exit of the Pacific jet, but with a different meridional position relative to the upper-level jet. The emergence of an annular response is found to be very sensitive to whether transient eddy forcing anomalies occur within the axis of the jet core. For forcing within the jet core, energy propagates poleward and downstream, inducing an annular response. For forcing away from the jet core, energy propagates equatorward and downstream, inducing a trapped regional response. The selection of an annular versus a regionally confined tropospheric response is thus postulated to depend on how the storm tracks respond. Tropical west Pacific SST forcing is particularly effective in exciting the required storm-track response from which a hemisphere-wide teleconnection structure emerges.


2020 ◽  
Vol 33 (16) ◽  
pp. 6989-7010 ◽  
Author(s):  
Lingfeng Tao ◽  
Xiu-Qun Yang ◽  
Jiabei Fang ◽  
Xuguang Sun

AbstractObserved wintertime atmospheric anomalies over the central North Pacific associated with the Pacific decadal oscillation (PDO) are characterized by a cold/trough (warm/ridge) structure, that is, an anomalous equivalent barotropic low (high) over a negative (positive) sea surface temperature (SST) anomaly. While the midlatitude atmosphere has its own strong internal variabilities, to what degree local SST anomalies can affect the midlatitude atmospheric variability remains unclear. To identify such an impact, three atmospheric general circulation model experiments each having a 63-yr-long simulation are conducted. The control run forced by observed global SST reproduces well the observed PDO-related cold/trough (warm/ridge) structure. However, the removal of the midlatitude North Pacific SST variabilities in the first sensitivity run reduces the atmospheric response by roughly one-third. In the second sensitivity run in which large-scale North Pacific SST variabilities are mostly kept, but their frontal-scale meridional gradients are sharply smoothed, simulated PDO-related cold/trough (warm/ridge) anomalies are also reduced by nearly one-third. Dynamical diagnoses exhibit that such a reduction is primarily due to the weakened transient eddy activities that are induced by weakened meridional SST gradient anomalies, in which the transient eddy vorticity forcing plays a crucial role. Therefore, it is suggested that midlatitude North Pacific SST anomalies make a considerable (approximately one-third) contribution to the observed PDO-related cold/trough (warm/ridge) anomalies in which the frontal-scale meridional SST gradient (oceanic front) is a key player, although most of those atmospheric anomalies are determined by the SST variabilities outside of the midlatitude North Pacific.


2008 ◽  
Vol 363 (1498) ◽  
pp. 1761-1766 ◽  
Author(s):  
Peter Good ◽  
Jason A Lowe ◽  
Mat Collins ◽  
Wilfran Moufouma-Okia

Future changes in meridional sea surface temperature (SST) gradients in the tropical Atlantic could influence Amazon dry-season precipitation by shifting the patterns of moisture convergence and vertical motion. Unlike for the El Niño-Southern Oscillation, there are no standard indices for quantifying this gradient. Here we describe a method for identifying the SST gradient that is most closely associated with June–August precipitation over the south Amazon. We use an ensemble of atmospheric general circulation model (AGCM) integrations forced by observed SST from 1949 to 2005. A large number of tropical Atlantic SST gradient indices are generated randomly and temporal correlations are examined between these indices and June–August precipitation averaged over the Amazon Basin south of the equator. The indices correlating most strongly with June–August southern Amazon precipitation form a cluster of near-meridional orientation centred near the equator. The location of the southern component of the gradient is particularly well defined in a region off the Brazilian tropical coast, consistent with known physical mechanisms. The chosen index appears to capture much of the Atlantic SST influence on simulated southern Amazon dry-season precipitation, and is significantly correlated with observed southern Amazon precipitation. We examine the index in 36 different coupled atmosphere–ocean model projections of climate change under a simple compound 1% increase in CO 2 . Within the large spread of responses, we find a relationship between the projected trend in the index and the Amazon dry-season precipitation trends. Furthermore, the magnitude of the trend relationship is consistent with the inter-annual variability relationship found in the AGCM simulations. This suggests that the index would be of use in quantifying uncertainties in climate change in the region.


2005 ◽  
Vol 18 (21) ◽  
pp. 4454-4473 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman

Abstract Equatorial Pacific sea surface temperature (SST) anomalies in the Center for Ocean–Land–Atmosphere Studies (COLA) interactive ensemble coupled general circulation model show near-annual variability as well as biennial El Niño–Southern Oscillation (ENSO) variability. There are two types of near-annual modes: a westward propagating mode and a stationary mode. For the westward propagating near-annual mode, warm SST anomalies are generated in the eastern equatorial Pacific in boreal spring and propagate westward in boreal summer. Consistent westward propagation is seen in precipitation, surface wind, and ocean current. For the stationary near-annual mode, warm SST anomalies develop near the date line in boreal winter and decay locally in boreal spring. Westward propagation of warm SST anomalies also appears in the developing year of the biennial ENSO mode. However, warm SST anomalies for the westward propagating near-annual mode occur about two months earlier than those for the biennial ENSO mode and are quickly replaced by cold SST anomalies, whereas warm SST anomalies for the biennial ENSO mode only experience moderate weakening. Anomalous zonal advection contributes to the generation and westward propagation of warm SST anomalies for both the westward propagating near-annual mode and the biennial ENSO mode. However, the role of mean upwelling is markedly different. The mean upwelling term contributes to the generation of warm SST anomalies for the biennial ENSO mode, but is mainly a damping term for the westward propagating near-annual mode. The development of warm SST anomalies for the stationary near-annual mode is partially due to anomalous zonal advection and upwelling, similar to the amplification of warm SST anomalies in the equatorial central Pacific for the biennial ENSO mode. The mean upwelling term is negative in the eastern equatorial Pacific for the stationary near-annual mode, which is opposite to the ENSO mode. The development of cold SST anomalies in the aftermath of warm SST anomalies for the westward propagating near-annual mode is coupled to large easterly wind anomalies, which occur between the warm and cold SST anomalies. The easterly anomalies contribute to the cold SST anomalies through anomalous zonal, meridional, and vertical advection and surface evaporation. The cold SST anomalies, in turn, enhance the easterly anomalies through a Rossby-wave-type response. The above processes are most effective during boreal spring when the mean near-surface-layer ocean temperature gradient is the largest. It is suggested that the westward propagating near-annual mode is related to air–sea interaction processes that are limited to the near-surface layers.


Sign in / Sign up

Export Citation Format

Share Document