scholarly journals Reconciling Theories for Human and Natural Attribution of Recent East Africa Drying

2017 ◽  
Vol 30 (6) ◽  
pp. 1939-1957 ◽  
Author(s):  
Andrew Hoell ◽  
Martin Hoerling ◽  
Jon Eischeid ◽  
Xiao-Wei Quan ◽  
Brant Liebmann

Abstract Two theories for observed East Africa drying trends during March–May 1979–2013 are reconciled. Both hypothesize that variations in tropical sea surface temperatures (SSTs) caused East Africa drying. The first invokes a mainly human cause resulting from sensitivity to secular warming of Indo–western Pacific SSTs. The second invokes a mainly natural cause resulting from sensitivity to a strong articulation of ENSO-like Pacific decadal variability involving warming of the western Pacific and cooling of the central Pacific. Historical atmospheric model simulations indicate that observed SST variations contributed significantly to the East Africa drying trend during March–May 1979–2013. By contrast, historical coupled model simulations suggest that external radiative forcing alone, including the ocean’s response to that forcing, did not contribute significantly to East Africa drying. Recognizing that the observed SST variations involved a commingling of natural and anthropogenic effects, this study diagnosed how East African rainfall sensitivity was conditionally dependent on the interplay of those factors. East African rainfall trends in historical coupled models were intercompared between two composites of ENSO-like decadal variability, one operating in the early twentieth century before appreciable global warming and the other in the early twenty-first century of strong global warming. The authors find the coaction of global warming with ENSO-like decadal variability can significantly enhance 35-yr East Africa drying trends relative to when the natural mode of ocean variability acts alone. A human-induced change via its interplay with an extreme articulation of natural variability may thus have been key to Africa drying; however, these results are speculative owing to differences among two independent suites of coupled model ensembles.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xichen Li ◽  
Xinyue Wang ◽  
Tao Lian ◽  
Nathaniel C. Johnson ◽  
Jiang Zhu ◽  
...  

AbstractDuring the modern satellite era since 1979, the Pacific Walker circulation (PWC) experienced an intensification and a westward shift, which has broad impacts on the global climate variability. While the strengthening of the PWC has been shown to be driven by both the regional Pacific sea surface temperature (SST) and the remote forcing from other basins, its westward shift is primarily attributed to the phase change of the Atlantic Multidecadal variability. In this study, we investigate the potential effect of the remote SST forcing from the Atlantic and the Indian Oceans on the westward shift of the PWC, through statistical analysis and numerical experiments using atmospheric and coupled models. Results show that the tropical Atlantic warming plays a key (decisive) role in driving the PWC westward shift by triggering a Gill–Matsuno-type circulation anomaly in the tropics. This circulation response drives anomalous surface westerlies over the eastern Pacific and subsidence over the central Pacific that weakens the eastern part of the PWC, meanwhile generating easterly wind anomalies over the central-western Pacific and anomalous atmospheric convection over the western Pacific that intensifies the western part of the PWC. This direct forcing contributes ~ 32% of the observed PWC movement, while the Atlantic-induced inter-basin SST changes contribute another ~ 36% of its westward shift according to coupled model simulation results. Our results reinforce the importance of the inter-basin interactions in adjusting the tropical climate variabilities, and have broad implication for projecting the global climate.


2015 ◽  
Vol 28 (19) ◽  
pp. 7561-7575 ◽  
Author(s):  
Yoo-Geun Ham ◽  
Yerim Jeong ◽  
Jong-Seong Kug

Abstract This study uses archives from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to investigate changes in independency between two types of El Niño events caused by greenhouse warming. In the observations, the independency between cold tongue (CT) and warm pool (WP) El Niño events is distinctively increased in recent decades. The simulated changes in independency between the two types of El Niño events according to the CMIP5 models are quite diverse, although the observed features are simulated to some extent in several climate models. It is found that the climatological change after global warming is an essential factor in determining the changes in independency between the two types of El Niño events. For example, the independency between these events is increased after global warming when the climatological precipitation is increased mainly over the equatorial central Pacific. This climatological precipitation increase extends convective response to the east, particularly for CT El Niño events, which leads to greater differences in the spatial pattern between the two types of El Niño events to increase the El Niño independency. On the contrary, in models with decreased independency between the two types of El Niño events after global warming, climatological precipitation is increased mostly over the western Pacific. This confines the atmospheric response to the western Pacific in both El Niño events; therefore, the similarity between them is increased after global warming. In addition to the changes in the climatological state after global warming, a possible connection of the changes in the El Niño independency with the historical mean state is discussed in this paper.


2013 ◽  
Vol 26 (23) ◽  
pp. 9247-9290 ◽  
Author(s):  
Justin Sheffield ◽  
Suzana J. Camargo ◽  
Rong Fu ◽  
Qi Hu ◽  
Xianan Jiang ◽  
...  

This is the second part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the twentieth-century simulations of intraseasonal to multidecadal variability and teleconnections with North American climate. Overall, the multimodel ensemble does reasonably well at reproducing observed variability in several aspects, but it does less well at capturing observed teleconnections, with implications for future projections examined in part three of this paper. In terms of intraseasonal variability, almost half of the models examined can reproduce observed variability in the eastern Pacific and most models capture the midsummer drought over Central America. The multimodel mean replicates the density of traveling tropical synoptic-scale disturbances but with large spread among the models. On the other hand, the coarse resolution of the models means that tropical cyclone frequencies are underpredicted in the Atlantic and eastern North Pacific. The frequency and mean amplitude of ENSO are generally well reproduced, although teleconnections with North American climate are widely varying among models and only a few models can reproduce the east and central Pacific types of ENSO and connections with U.S. winter temperatures. The models capture the spatial pattern of Pacific decadal oscillation (PDO) variability and its influence on continental temperature and West Coast precipitation but less well for the wintertime precipitation. The spatial representation of the Atlantic multidecadal oscillation (AMO) is reasonable, but the magnitude of SST anomalies and teleconnections are poorly reproduced. Multidecadal trends such as the warming hole over the central–southeastern United States and precipitation increases are not replicated by the models, suggesting that observed changes are linked to natural variability.


2013 ◽  
Vol 26 (18) ◽  
pp. 7151-7166 ◽  
Author(s):  
Riccardo Farneti ◽  
Geoffrey K. Vallis

Abstract The variability and compensation of the meridional energy transport in the atmosphere and ocean are examined with the state-of-the-art GFDL Climate Model, version 2.1 (CM2.1), and the GFDL Intermediate Complexity Coupled Model (ICCM). On decadal time scales, a high degree of compensation between the energy transport in the atmosphere (AHT) and ocean (OHT) is found in the North Atlantic. The variability of the total or planetary heat transport (PHT) is much smaller than the variability in either AHT or OHT alone, a feature referred to as “Bjerknes compensation.” Natural decadal variability stems from the Atlantic meridional overturning circulation (AMOC), which leads OHT variability. The PHT is positively correlated with the OHT, implying that the atmosphere is compensating, but imperfectly, for variations in ocean transport. Because of the fundamental role of the AMOC in generating the decadal OHT anomalies, Bjerknes compensation is expected to be active only in coupled models with a low-frequency AMOC spectral peak. The AHT and the transport in the oceanic gyres are positively correlated because the gyre transport responds to the atmospheric winds, thereby militating against long-term variability involving the wind-driven flow. Moisture and sensible heat transports in the atmosphere are also positively correlated at decadal time scales. The authors further explore the mechanisms and degree of compensation with a simple, diffusive, two-layer energy balance model. Taken together, these results suggest that compensation can be interpreted as arising from the highly efficient nature of the meridional energy transport in the atmosphere responding to ocean variability rather than any a priori need for the top-of-atmosphere radiation budget to be fixed.


2019 ◽  
Vol 32 (5) ◽  
pp. 1443-1459 ◽  
Author(s):  
Tao Geng ◽  
Yun Yang ◽  
Lixin Wu

Abstract Changes of the Pacific decadal oscillation (PDO) under global warming are investigated by using outputs from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and a theoretical midlatitude air–sea coupled model. In a warming climate, the decadal variability of the PDO is found to be significantly suppressed, with the amplitude reduced and the decadal cycle shifted toward a higher-frequency band. We used the theoretical model put forward by Goodman and Marshall (herein the GM model) to underpin the potential mechanisms. The GM model exhibits a growing coupled mode that resembles the simulated PDO. It is found that the suppression of the PDO appears to be associated with the acceleration of Rossby waves due to the enhanced oceanic stratification under global warming. This shortens the PDO period and reduces PDO amplitude by limiting the growth time of the coupled mode. The GM model also suggests that the increase of growth rate due to strengthening of oceanic stratification tends to magnify the PDO amplitude, counteracting the Rossby wave effect. This growth rate influence, however, plays a secondary role.


2009 ◽  
Vol 22 (10) ◽  
pp. 2526-2540 ◽  
Author(s):  
Li Shi ◽  
Oscar Alves ◽  
Harry H. Hendon ◽  
Guomin Wang ◽  
David Anderson

Abstract The impact of stochastic intraseasonal variability on the onset of the 1997/98 El Niño was examined using a large ensemble of forecasts starting on 1 December 1996, produced using the Australian Bureau of Meteorology Predictive Ocean Atmosphere Model for Australia (POAMA) seasonal forecast coupled model. This coupled model has a reasonable simulation of El Niño and the Madden–Julian oscillation, so it provides an ideal framework for investigating the interaction between the MJO and El Niño. The experiment was designed so that the ensemble spread was simply a result of internal stochastic variability that is generated during the forecast. For the initial conditions used here, all forecasts led to warm El Niño–type conditions with the amplitude of the warming varying from 0.5° to 2.7°C in the Niño-3.4 region. All forecasts developed an MJO event during the first 4 months, indicating that perhaps the background state favored MJO development. However, the details of the MJOs that developed during December 1996–March 1997 had a significant impact on the subsequent strength of the El Niño event. In particular, the forecasts with the initial MJOs that extended farther into the central Pacific, on average, led to a stronger El Niño, with the westerly winds in the western Pacific associated with the MJO leading the development of SST and thermocline anomalies in the central and eastern Pacific. These results imply a limit to the accuracy with which the strength of El Niño can be predicted because the details of individual MJO events matter. To represent realistic uncertainty, coupled models should be able to represent the MJO, including its propagation into the central Pacific so that forecasts produce sufficient ensemble spread.


2009 ◽  
Vol 22 (14) ◽  
pp. 3993-4013 ◽  
Author(s):  
Guillaume Gastineau ◽  
Laurent Li ◽  
Hervé Le Treut

Abstract Sea surface temperature (SST) changes constitute a major indicator and driver of climate changes induced by greenhouse gas increases. The objective of the present study is to investigate the role played by the detailed structure of the SST change on the large-scale atmospheric circulation and the distribution of precipitation. For that purpose, simulations from the Institut Pierre-Simon Laplace Coupled Model, version 4 (IPSL-CM4) are used where the carbon dioxide (CO2) concentration is doubled. The response of IPSL-CM4 is characterized by the same robust mechanisms affecting the other coupled models in global warming simulations, that is, an increase of the hydrological cycle accompanied by a global weakening of the large-scale circulation. First, purely atmospheric simulations are performed to mimic the results of the coupled model. Then, specific simulations are set up to further study the underlying atmospheric mechanisms. These simulations use different prescribed SST anomalies, which correspond to a linear decomposition of the IPSL-CM4 SST changes in global, longitudinal, and latitudinal components. The simulation using a globally uniform increase of the SST is able to reproduce the modifications in the intensity of the hydrological cycle or in the mean upward mass flux, which also characterize the double CO2 simulation with the coupled model. But it is necessary (and largely sufficient) to also take into account the zonal-mean meridional structure of the SST changes to represent correctly the changes in the Hadley circulation strength or the zonal-mean precipitation changes simulated by the coupled model, even if these meridional changes by themselves do not change the mean thermodynamical state of the tropical atmosphere. The longitudinal SST anomalies of IPSL-CM4 also have an impact on the precipitation and large-scale tropical circulation and tend to introduce different changes over the Pacific and Atlantic Oceans. The longitudinal SST changes are demonstrated to have a smaller but opposite effect from that of the meridional anomalies on the Hadley cell circulations. Results indicate that the uncertainties in the simulated meridional patterns of the SST warming may have major consequences on the assessment of the changes of the Hadley circulation and zonal-mean precipitation in future climate projections.


2020 ◽  
Vol 33 (12) ◽  
pp. 5141-5154
Author(s):  
Qinglong You ◽  
Fangying Wu ◽  
Hongguo Wang ◽  
Zhihong Jiang ◽  
Nick Pepin ◽  
...  

AbstractSnow water equivalent (SWE) is a critical parameter for characterizing snowpack, which has a direct influence on the hydrological cycle, especially over high terrain. In this study, SWE from 18 coupled model simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) is validated against the Canadian Sea Ice and Snow Evolution Network (CanSISE) SWE. The model simulations under RCP8.5 and RCP4.5 are employed to investigate projected changes in spring/winter SWE over the Tibetan Plateau (TP) under global warming of 1.5° and 2°C. Most CMIP5 models overestimate the CanSISE SWE. A decrease in mean spring/winter SWE for both RCPs over most regions of the TP is predicted in the future, with most significant reductions over the western TP, consistent with pronounced warming in that region. This is supported by strong positive correlations between SWE and mean temperature in the future in both seasons. Compared with the preindustrial period, spring/winter SWE over the TP under global warming of 1.5° and 2°C will reduce significantly, at faster rates than over China as a whole and the Northern Hemisphere. SWE changes over the TP do not show a simple elevation dependency under global warming of 1.5° and 2°C, with maximum changes in the elevation band of 4000–4500 m. Moreover, there are also strong positive correlations between projected SWE and historical mean SWE, indicating that the initial conditions of SWE are an important parameter of future SWE under specific global warming scenarios.


2016 ◽  
Vol 29 (10) ◽  
pp. 3607-3627 ◽  
Author(s):  
Wei Chen ◽  
June-Yi Lee ◽  
Kyung-Ja Ha ◽  
Kyung-Sook Yun ◽  
Riyu Lu

Abstract Two types of El Niño evolution have been identified in terms of the lengths of their decaying phases: the first type is a short decaying El Niño that terminates in the following summer after the mature phase, and the second type is a long decaying one that persists until the subsequent winter. The responses of the western North Pacific anticyclone (WNPAC) anomaly to the two types of evolution are remarkably different. Using experiments from phase 5 of the Coupled Model Intercomparison Project (CMIP5), this study investigates how well climate models reproduce the two types of El Niño evolution and their impacts on the WNPAC in the historical period (1950–2005) and how they will change in the future under anthropogenic global warming. To reduce uncertainty in future projection, the nine best models are selected based on their performance in simulating El Niño evolution. In the historical run, the nine best models’ multimodel ensemble (B9MME) well reproduces the enhanced (weakened) WNPAC that is associated with the short (long) decaying El Niño. The comparison between results of the historical run for 1950–2005 and the representative concentration pathway 4.5 run for 2050–99 reveals that individual models and the B9MME tend to project no significant changes in the two types of El Niño evolution for the latter half of the twenty-first century. However, the WNPAC response to the short decaying El Niño is considerably intensified, being associated with the enhanced negative precipitation anomaly response over the equatorial central Pacific. This enhancement is attributable to the robust increase in mean and interannual variability of precipitation over the equatorial central Pacific under global warming.


2015 ◽  
Vol 28 (6) ◽  
pp. 2385-2404 ◽  
Author(s):  
Wenchang Yang ◽  
Richard Seager ◽  
Mark A. Cane ◽  
Bradfield Lyon

Abstract East African precipitation is characterized by a dry annual mean climatology compared to other deep tropical land areas and a bimodal annual cycle with the major rainy season during March–May (MAM; often called the “long rains”) and the second during October–December (OND; often called the “short rains”). To explore these distinctive features, ERA-Interim data are used to analyze the associated annual cycles of atmospheric convective stability, circulation, and moisture budget. The atmosphere over East Africa is found to be convectively stable in general year-round but with an annual cycle dominated by the surface moist static energy (MSE), which is in phase with the precipitation annual cycle. Throughout the year, the atmospheric circulation is dominated by a pattern of convergence near the surface, divergence in the lower troposphere, and convergence again at upper levels. Consistently, the convergence of the vertically integrated moisture flux is mostly negative across the year, but becomes weakly positive in the two rainy seasons. It is suggested that the semiarid/arid climate in East Africa and its bimodal precipitation annual cycle can be explained by the ventilation mechanism, in which the atmospheric convective stability over East Africa is controlled by the import of low MSE air from the relatively cool Indian Ocean off the coast. During the rainy seasons, however, the off-coast sea surface temperature (SST) increases (and is warmest during the long rains season) and consequently the air imported into East Africa becomes less stable. This analysis may be used to aid in understanding overestimates of the East African short rains commonly found in coupled models.


Sign in / Sign up

Export Citation Format

Share Document