scholarly journals The Influence of Autumnal Eurasian Snow Cover on Climate and Its Link with Arctic Sea Ice Cover

2017 ◽  
Vol 30 (19) ◽  
pp. 7599-7619 ◽  
Author(s):  
Guillaume Gastineau ◽  
Javier García-Serrano ◽  
Claude Frankignoul

Abstract The relationship between Eurasian snow cover extent (SCE) and Northern Hemisphere atmospheric circulation is studied in reanalysis during 1979–2014 and in CMIP5 preindustrial control runs. In observations, dipolar SCE anomalies in November, with negative anomalies over eastern Europe and positive anomalies over eastern Siberia, are followed by a negative phase of the Arctic Oscillation (AO) one and two months later. In models, this effect is largely underestimated, but four models simulate such a relationship. In observations and these models, the SCE influence is primarily due to the eastern Siberian pole, which is itself driven by the Scandinavian pattern (SCA), with a large anticyclonic anomaly over the Urals. The SCA is also responsible for a link between Eurasian SCE anomalies and sea ice concentration (SIC) anomalies in the Barents–Kara Sea. Increasing SCE over Siberia leads to a local cooling of the lower troposphere and is associated with warm conditions over the eastern Arctic. This is followed by a polar vortex weakening in December and January, which has an AO-like signature. In observations, the association between November SCE and the winter AO is amplified by SIC anomalies in the Barents–Kara Sea, where large diabatic heating of the lower troposphere occurs, but results suggest that the SCE is the main driver of the AO. Conversely, the sea ice anomalies have little influence in most models, which is consistent with the different SCA variability, the colder mean state, and the underestimation of troposphere–stratosphere coupling simulated in these models.

Author(s):  
Ruonan Zhang ◽  
Chenghu Sun ◽  
Jieshun Zhu ◽  
Renhe Zhang ◽  
Weijing Li

2019 ◽  
Vol 124 (16) ◽  
pp. 9205-9221 ◽  
Author(s):  
Ruonan Zhang ◽  
Chenghu Sun ◽  
Renhe Zhang ◽  
Weijing Li ◽  
Jinqing Zuo

2011 ◽  
Vol 24 (7) ◽  
pp. 2017-2023 ◽  
Author(s):  
Qigang Wu ◽  
Haibo Hu ◽  
Lujun Zhang

Abstract The impact of the Eurasian snow cover extent on the Northern Hemisphere (NH) circulation is investigated by applying a lagged maximum covariance analysis (MCA) to monthly satellite-derived snow cover and NCEP reanalysis data. Wintertime atmospheric signals significantly correlated with persistently autumn–early winter snow cover anomalies are found in the leading two MCA modes. The first MCA mode indicates the effect of Eurasian snow cover anomalies on the Arctic Oscillation/North Atlantic Oscillation (AO/NAO). The second MCA mode corresponds with the forcing of Eurasian snow cover anomalies on the hemispheric Pacific–North America (PNA)-like atmospheric variations. This snow–atmosphere relationship may present a significant potential for wintertime predictability.


1990 ◽  
Vol 14 ◽  
pp. 364 ◽  
Author(s):  
Tetsuzo Yasunari ◽  
Akio Kitoh ◽  
Tatsushi Tokioka

Observational studies have shown that Eurasian snow-cover anomalies during winter-through-spring seasons have a great effect on anomalies in atmospheric circulation and climate in the following summer season through snow albedo feedback (Hahn and Shukla, 1976; Dey and Bhanu Kumar, 1987). Morinaga and Yasunari (1987) have revealed that large-scale snow-cover extent over central Asia in late winter, which particularly has a great effect on the circulation over Eurasia in the following season, is closely related to the Eurasian pattern circulation (Wallace and Gutzler, 1981) in the beginning of winter. Some atmospheric general circulation models (GCM) have suggested that not only the albedo effect of the snow cover but also the snow-hydrological process are important in producing the atmospheric anomalies in the following seasons (Yeh and others, 1984; Barnett and others, 1988). However, more quantitative evaluations of these effects have not yet been examined. For example, it is not clear to what extent atmospheric anomalies are explained solely by snow-cover anomalies. Spatial and seasonal dependencies of these effects are supposed to be very large. Relative importance of snow cover over Tibetan Plateau should also be examined, particularly relevant to Asian summer monsoon anomalies. Moreover, these effects seem to be very sensitive to parameterizations of these physical processes (Yamazaki, 1988). This study focuses on these problems by using some versions of GCMs of the Meteorological Research Institute. The results include the evaluation of total snow-cover feedbacks as part of internal dynamics of climatic change from 12-year GCM integration, and of the effect of anomalous snow cover over Eurasia in late winter on land surface conditions and atmospheric circulations in the succeeding seasons.


2016 ◽  
Vol 97 (11) ◽  
pp. 2163-2176 ◽  
Author(s):  
Abhay Devasthale ◽  
Joseph Sedlar ◽  
Brian H. Kahn ◽  
Michael Tjernström ◽  
Eric J. Fetzer ◽  
...  

Abstract Arctic sea ice is declining rapidly and its annual ice extent minima reached record lows twice during the last decade. Large environmental and socioeconomic implications related to sea ice reduction in a warming world necessitate realistic simulations of the Arctic climate system, not least to formulate relevant environmental policies on an international scale. However, despite considerable progress in the last few decades, future climate projections from numerical models still exhibit the largest uncertainties over the polar regions. The lack of sufficient observations of essential climate variables is partly to blame for the poor representation of key atmospheric processes, and their coupling to the surface, in climate models. Observations from the hyperspectral Atmospheric Infrared Sounder (AIRS) instrument on board the National Aeronautics and Space Administration (NASA)’s Aqua satellite are contributing toward improved understanding of the vertical structure of the atmosphere over the poles since 2002, including the lower troposphere. This part of the atmosphere is especially important in the Arctic, as it directly impacts sea ice and its short-term variability. Although in situ measurements provide invaluable ground truth, they are spatially and temporally inhomogeneous and sporadic over the Arctic. A growing number of studies are exploiting AIRS data to investigate the thermodynamic structure of the Arctic atmosphere, with applications ranging from understanding processes to deriving climatologies—all of which are also useful to test and improve parameterizations in climate models. As the AIRS data record now extends more than a decade, a select few of many such noteworthy applications of AIRS data over this challenging and rapidly changing landscape are highlighted here.


2020 ◽  
Vol 61 (82) ◽  
pp. 164-170
Author(s):  
Ioanna Merkouriadi ◽  
Bin Cheng ◽  
Stephen R. Hudson ◽  
Mats A. Granskog

AbstractWe examine the relative effect of warming events (storms) and snow cover on thermodynamic growth of Arctic sea ice in winter. We use a 1-D snow and ice thermodynamic model to perform sensitivity experiments. Observations from the winter period of the Norwegian young sea ICE (N-ICE2015) campaign north of Svalbard are used to initiate and force the model. The N-ICE2015 winter was characterized by frequent storm events that brought pulses of heat and moisture, and a thick snow cover atop the sea ice (0.3–0.5 m). By the end of the winter, sea-ice bottom growth was negligible. We show that the thermodynamic effect of storms to the winter sea-ice growth is controlled by the amount of snow on sea ice. For 1.3 m initial ice thickness, the decrease in ice growth caused by the warming events ranged from −1.4% (for 0.5 m of snow) to −7.5% (for snow-free conditions). The decrease in sea-ice growth caused by the thick snow (0.5 m) was more important, ranging from −17% (with storms) to −23% (without storms). The results showcase the critical role of snow on winter Arctic sea-ice growth.


2011 ◽  
Vol 24 (24) ◽  
pp. 6528-6539 ◽  
Author(s):  
Robert J. Allen ◽  
Charles S. Zender

Abstract Throughout much of the latter half of the twentieth century, the dominant mode of Northern Hemisphere (NH) extratropical wintertime circulation variability—the Arctic Oscillation (AO)—exhibited a positive trend, with decreasing high-latitude sea level pressure (SLP) and increasing midlatitude SLP. General circulation models (GCMs) show that this trend is related to several factors, including North Atlantic SSTs, greenhouse gas/ozone-induced stratospheric cooling, and warming of the Indo-Pacific warm pool. Over the last approximately two decades, however, the AO has been decreasing, with 2009/10 featuring the most negative AO since 1900. Observational and idealized modeling studies suggest that snow cover, particularly over Eurasia, may be important. An observed snow–AO mechanism also exists, involving the vertical propagation of a Rossby wave train into the stratosphere, which induces a negative AO response that couples to the troposphere. Similar to other GCMs, the authors show that transient simulations with the Community Atmosphere Model, version 3 (CAM3) yield a snow–AO relationship inconsistent with observations and dissimilar AO trends. However, Eurasian snow cover and its interannual variability are significantly underestimated. When the albedo effects of snow cover are prescribed in CAM3 (CAM PS) using satellite-based snow cover fraction data, a snow–AO relationship similar to observations develops. Furthermore, the late-twentieth-century increase in the AO, and particularly the recent decrease, is reproduced by CAM PS. The authors therefore conclude that snow cover has helped force the observed AO trends and that it may play an important role in future AO trends.


2015 ◽  
Vol 15 (12) ◽  
pp. 17527-17552 ◽  
Author(s):  
M. Abe ◽  
T. Nozawa ◽  
T. Ogura ◽  
K. Takata

Abstract. This study investigates the effect of sea ice reduction on Arctic cloud cover in historical simulations with the coupled atmosphere–ocean general circulation model MIROC5. During simulated global warming since the 1970s, the Arctic sea ice extent has reduced substantially, particularly in September. This simulated reduction is consistent with satellite observation results. However, the Arctic cloud cover increases significantly during October at grids with significant reductions in sea ice because of the enhanced heat and moisture flux from the underlying ocean. Cloud fraction increases in the lower troposphere. However, the cloud fraction in the surface thin layers just above the ocean decreases despite the increased moisture because the surface air temperature rises strikingly in the thin layers and the relative humidity decreases. As the cloud cover increases, the cloud radiative effect in surface downward longwave radiation (DLR) increases by approximately 40–60 % compared to a change in clear-sky surface DLR. These results suggest that an increase in the Arctic cloud cover as a result of a reduction in sea ice could further melt the sea ice and enhance the feedback processes of the Arctic amplification in future projections.


2018 ◽  
Vol 12 (10) ◽  
pp. 3373-3382 ◽  
Author(s):  
Aaron Letterly ◽  
Jeffrey Key ◽  
Yinghui Liu

Abstract. Recent declines in Arctic sea ice and snow extent have led to an increase in the absorption of solar energy at the surface, resulting in additional surface heating and a further decline in snow and ice. Using 34 years of satellite data, 1982–2015, we found that the positive trend in solar absorption over the Arctic Ocean is more than double that over Arctic land, and the magnitude of the ice–albedo feedback is four times that of the snow–albedo feedback in summer. The timing of the high-to-low albedo transition has shifted closer to the greater insolation of the summer solstice over ocean, but further away from the summer solstice over land. Therefore, decreasing sea ice cover, not changes in terrestrial snow cover, has been the dominant radiative feedback mechanism over the last few decades.


Sign in / Sign up

Export Citation Format

Share Document