scholarly journals Projected Changes in the Arctic Frontal Zone and Summer Arctic Cyclone Activity in the CESM Large Ensemble

2017 ◽  
Vol 30 (24) ◽  
pp. 9847-9869 ◽  
Author(s):  
Alex D. Crawford ◽  
Mark C. Serreze

The Arctic frontal zone (AFZ) is a narrow band of strong horizontal temperature gradients that develops along the Arctic Ocean coastline each summer in response to differential heating of the atmosphere over adjacent land and ocean surfaces. Past research has linked baroclinicity within the AFZ to summer Arctic cyclone development, especially by intensifying storms that migrate northward from the Eurasian continent. This study uses the Community Earth System Model Large Ensemble in conjunction with an advanced cyclone detection and tracking algorithm to assess how the AFZ, summer Arctic cyclone activity, and the relationship between them respond to warming under the representative concentration pathway 8.5 (RCP8.5) scenario. Under this strong warming scenario, the AFZ remains a significant cyclone intensifier. Changes to the AFZ are largely restricted to June, when earlier snowmelt leads to strengthening of land–ocean temperature contrasts. This strengthening is accompanied by enhanced cyclogenesis along the east Siberian coast, but no change is observed for overall cyclone frequency over the Arctic Ocean. However, simultaneous changes to subpolar storm tracks impact Arctic cyclone activity in all summer months, sometimes in opposition to the impact of the AFZ. In June, the storms migrating poleward to the Arctic Ocean become weaker under RCP8.5, leading to lower Arctic cyclone intensity. In July and August, the poleward shift of the North Pacific storm track enhances cyclone activity in the Beaufort and Chukchi Seas.

2016 ◽  
Vol 29 (13) ◽  
pp. 4977-4993 ◽  
Author(s):  
Alex D. Crawford ◽  
Mark C. Serreze

Abstract Extratropical cyclone activity over the central Arctic Ocean reaches its peak in summer. Previous research has argued for the existence of two external source regions for cyclones contributing to this summer maximum: the Eurasian continent interior and a narrow band of strong horizontal temperature gradients along the Arctic coastline known as the Arctic frontal zone (AFZ). This study incorporates data from an atmospheric reanalysis and an advanced cyclone detection and tracking algorithm to critically evaluate the relationship between the summer AFZ and cyclone activity in the central Arctic Ocean. Analysis of both individual cyclone tracks and seasonal fields of cyclone characteristics shows that the Arctic coast (and therefore the AFZ) is not a region of cyclogenesis. Rather, the AFZ acts as an intensification area for systems forming over Eurasia. As these systems migrate toward the Arctic Ocean, they experience greater deepening in situations when the AFZ is strong at midtropospheric levels. On a broader scale, intensity of the summer AFZ at midtropospheric levels has a positive correlation with cyclone intensity in the Arctic Ocean during summer, even when controlling for variability in the northern annular mode. Taken as a whole, these findings suggest that the summer AFZ can intensify cyclones that cross the coast into the Arctic Ocean, but focused modeling studies are needed to disentangle the relative importance of the AFZ, large-scale circulation patterns, and topographic controls.


2015 ◽  
Vol 28 (2) ◽  
pp. 737-754 ◽  
Author(s):  
Alex Crawford ◽  
Mark Serreze

Abstract A notable characteristic of the summertime Arctic is the existence of a narrow band of strong horizontal temperature gradients spanning the coastlines of Siberia, Alaska, and western Canada that extends through a considerable depth of the troposphere. Past research has associated this summer Arctic Frontal Zone (AFZ) with contrasts in atmospheric heating between the Arctic Ocean and snow-free land, with its regional strength strongly influenced by topography; however, little is known about its variability. In this study, output from the latest generation of global atmospheric reanalyses is used to better constrain and define the summer AFZ, including its spatial and seasonal characteristics. The relative importance of different factors linked to its variability is then evaluated. The AFZ is best expressed in July and is manifested aloft as a separate Arctic jet feature at about 250 hPa. It is clearly associated with differential atmospheric heating, as evidenced by the sharp difference in surface energy balance terms between the Arctic Ocean and land. Furthermore, the AFZ is strongest over the coastline whether observed near the surface or throughout the troposphere. Interannual variations in peak strength of the AFZ are spatially heterogeneous and systematic near the surface (the 2-m level). Spatiotemporal variability is primarily dependent on factors affecting temperature over land, especially variability in cloud cover, surface wind direction, and the timing of the annual snow cover retreat. Local variability in the timing of annual sea ice retreat is also important through its control on temperatures over coastal seas.


2021 ◽  
Vol 34 (10) ◽  
pp. 3799-3819
Author(s):  
Hyung-Gyu Lim ◽  
Jong-Yeon Park ◽  
John P. Dunne ◽  
Charles A. Stock ◽  
Sung-Ho Kang ◽  
...  

AbstractHuman activities such as fossil fuel combustion, land-use change, nitrogen (N) fertilizer use, emission of livestock, and waste excretion accelerate the transformation of reactive N and its impact on the marine environment. This study elucidates that anthropogenic N fluxes (ANFs) from atmospheric and river deposition exacerbate Arctic warming and sea ice loss via physical–biological feedback. The impact of physical–biological feedback is quantified through a suite of experiments using a coupled climate–ocean–biogeochemical model (GFDL-CM2.1-TOPAZ) by prescribing the preindustrial and contemporary amounts of riverine and atmospheric N fluxes into the Arctic Ocean. The experiment forced by ANFs represents the increase in ocean N inventory and chlorophyll concentrations in present and projected future Arctic Ocean relative to the experiment forced by preindustrial N flux inputs. The enhanced chlorophyll concentrations by ANFs reinforce shortwave attenuation in the upper ocean, generating additional warming in the Arctic Ocean. The strongest responses are simulated in the Eurasian shelf seas (Kara, Barents, and Laptev Seas; 65°–90°N, 20°–160°E) due to increased N fluxes, where the annual mean surface temperature increase by 12% and the annual mean sea ice concentration decrease by 17% relative to the future projection, forced by preindustrial N inputs.


2014 ◽  
Vol 11 (2) ◽  
pp. 293-308 ◽  
Author(s):  
E. E. Popova ◽  
A. Yool ◽  
Y. Aksenov ◽  
A. C. Coward ◽  
T. R. Anderson

Abstract. The Arctic Ocean is a region that is particularly vulnerable to the impact of ocean acidification driven by rising atmospheric CO2, with potentially negative consequences for calcifying organisms such as coccolithophorids and foraminiferans. In this study, we use an ocean-only general circulation model, with embedded biogeochemistry and a comprehensive description of the ocean carbon cycle, to study the response of pH and saturation states of calcite and aragonite to rising atmospheric pCO2 and changing climate in the Arctic Ocean. Particular attention is paid to the strong regional variability within the Arctic, and, for comparison, simulation results are contrasted with those for the global ocean. Simulations were run to year 2099 using the RCP8.5 (an Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) scenario with the highest concentrations of atmospheric CO2). The separate impacts of the direct increase in atmospheric CO2 and indirect effects via impact of climate change (changing temperature, stratification, primary production and freshwater fluxes) were examined by undertaking two simulations, one with the full system and the other in which atmospheric CO2 was prevented from increasing beyond its preindustrial level (year 1860). Results indicate that the impact of climate change, and spatial heterogeneity thereof, plays a strong role in the declines in pH and carbonate saturation (Ω) seen in the Arctic. The central Arctic, Canadian Arctic Archipelago and Baffin Bay show greatest rates of acidification and Ω decline as a result of melting sea ice. In contrast, areas affected by Atlantic inflow including the Greenland Sea and outer shelves of the Barents, Kara and Laptev seas, had minimal decreases in pH and Ω because diminishing ice cover led to greater vertical mixing and primary production. As a consequence, the projected onset of undersaturation in respect to aragonite is highly variable regionally within the Arctic, occurring during the decade of 2000–2010 in the Siberian shelves and Canadian Arctic Archipelago, but as late as the 2080s in the Barents and Norwegian seas. We conclude that, for future projections of acidification and carbonate saturation state in the Arctic, regional variability is significant and needs to be adequately resolved, with particular emphasis on reliable projections of the rates of retreat of the sea ice, which are a major source of uncertainty.


2018 ◽  
Vol 32 (1) ◽  
pp. 15-32 ◽  
Author(s):  
Qiang Wang ◽  
Claudia Wekerle ◽  
Sergey Danilov ◽  
Dmitry Sidorenko ◽  
Nikolay Koldunov ◽  
...  

Abstract The freshwater stored in the Arctic Ocean is an important component of the global climate system. Currently the Arctic liquid freshwater content (FWC) has reached a record high since the beginning of the last century. In this study we use numerical simulations to investigate the impact of sea ice decline on the Arctic liquid FWC and its spatial distribution. The global unstructured-mesh ocean general circulation model Finite Element Sea Ice–Ocean Model (FESOM) with 4.5-km horizontal resolution in the Arctic region is applied. The simulations show that sea ice decline increases the FWC by freshening the ocean through sea ice meltwater and modifies upper ocean circulation at the same time. The two effects together significantly increase the freshwater stored in the Amerasian basin and reduce its amount in the Eurasian basin. The salinification of the upper Eurasian basin is mainly caused by the reduction in the proportion of Pacific Water and the increase in that of Atlantic Water (AW). Consequently, the sea ice decline did not significantly contribute to the observed rapid increase in the Arctic total liquid FWC. However, the changes in the Arctic freshwater spatial distribution indicate that the influence of sea ice decline on the ocean environment is remarkable. Sea ice decline increases the amount of Barents Sea branch AW in the upper Arctic Ocean, thus reducing its supply to the deeper Arctic layers. This study suggests that all the dynamical processes sensitive to sea ice decline should be taken into account when understanding and predicting Arctic changes.


1993 ◽  
Vol 67 (S35) ◽  
pp. 1-35 ◽  
Author(s):  
Louie Marincovich

The marine molluscan fauna of the Prince Creek Formation near Ocean Point, northern Alaska, is of Danian age. It is the only diverse and abundant Danian molluscan fauna known from the Arctic Ocean realm, and is the first evidence for an indigenous Paleocene shallow-water biota within a discrete Arctic Ocean Basin faunal province.A high percentage of endemic species, and two endemic genera, emphasize the degree to which the Arctic Ocean was geographically isolated from the world ocean during the earliest Tertiary. Many of the well-preserved Ocean Point mollusks, however, also occur in Danian faunas of the North American Western Interior, the Canadian Arctic Islands, Svalbard, and northwestern Europe, and are the basis for relating this Arctic Ocean fauna to that of the Danian world ocean.The Arctic Ocean was a Danian refugium for some genera that became extinct elsewhere during the Jurassic and Cretaceous. At the same time, this nearly landlocked ocean fostered the evolution of new taxa that later in the Paleogene migrated into the world ocean by way of the northeastern Atlantic. The first Cenozoic occurrences are reported for the bivalves Integricardium (Integricardium), Oxytoma (Hypoxytoma), Placunopsis, Tancredia (Tancredia), and Tellinimera, and the oldest Cenozoic records given for the bivalves Gari (Garum), Neilo, and Yoldia (Cnesterium). Among the 25 species in the molluscan fauna are four new gastropod species, Amauropsis fetteri, Ellipsoscapha sohli, Mathilda (Fimbriatella) amundseni, and Polinices (Euspira) repenningi, two new bivalve genera, Arcticlam and Mytilon, and 15 new bivalve species, Arcticlam nanseni, Corbula (Caryocorbula) betsyae, Crenella kannoi, Cyrtodaria katieae, Gari (Garum) brouwersae, Integricardium (Integricardium) keenae, Mytilon theresae, Neilo gryci, Nucula (Nucula) micheleae, Nuculana (Jupiteria) moriyai, Oxytoma (Hypoxytoma) hargrovei, Placunopsis rothi, Tancredia (Tancredia) slavichi, Tellinimera kauffmani, and Yoldia (Cnesterium) gladenkovi.


1984 ◽  
Vol 5 ◽  
pp. 61-68 ◽  
Author(s):  
T. Holt ◽  
P. M. Kelly ◽  
B. S. G. Cherry

Soviet plans to divert water from rivers flowing into the Arctic Ocean have led to research into the impact of a reduction in discharge on Arctic sea ice. We consider the mechanisms by which discharge reductions might affect sea-ice cover and then test various hypotheses related to these mechanisms. We find several large areas over which sea-ice concentration correlates significantly with variations in river discharge, supporting two particular hypotheses. The first hypothesis concerns the area where the initial impacts are likely to which is the Kara Sea. Reduced riverflow is associated occur, with decreased sea-ice concentration in October, at the time of ice formation. This is believed to be the result of decreased freshening of the surface layer. The second hypothesis concerns possible effects on the large-scale current system of the Arctic Ocean and, in particular, on the inflow of Atlantic and Pacific water. These effects occur as a result of changes in the strength of northward-flowing gradient currents associated with variations in river discharge. Although it is still not certain that substantial transfers of riverflow will take place, it is concluded that the possibility of significant cryospheric effects and, hence, large-scale climate impact should not be neglected.


2009 ◽  
Vol 6 (1) ◽  
pp. 971-994 ◽  
Author(s):  
E. H. Shadwick ◽  
T. Papakyriakou ◽  
A. E. F. Prowe ◽  
D. Leong ◽  
S. A. Moore ◽  
...  

Abstract. The Arctic Ocean is expected to be disproportionately sensitive to climatic changes, and is thought to be an area where such changes might be detected. The Arctic hydrological cycle is influenced by: runoff and precipitation, sea ice formation/melting, and the inflow of saline waters from Bering and Fram Straits and the Barents Sea Shelf. Pacific water is recognizable as intermediate salinity water, with high concentrations of dissolved inorganic carbon (DIC), flowing from the Arctic Ocean to the North Atlantic via the Canadian Arctic Archipelago. We present DIC data from an east-west section through the Archipelago, as part of the Canadian International Polar Year initiatives. The fractions of Pacific and Arctic Ocean waters leaving the Archipelago and entering Baffin Bay, and subsequently the North Atlantic, are computed. The eastward transport of carbon from the Pacific, via the Arctic, to the North Atlantic is estimated. Altered mixing ratios of Pacific and freshwater in the Arctic Ocean have been recorded in recent decades. Any climatically driven alterations in the composition of waters leaving the Arctic Archipelago may have implications for anthropogenic CO2 uptake, and hence ocean acidification, in the subpolar and temperate North Atlantic.


1975 ◽  
Vol 15 (73) ◽  
pp. 193-213
Author(s):  
Moira Dunbar

AbstractSLAR imagery of Nares Strait was obtained on three flights carried out in. January, March, and August of 1973 by Canadian Forces Maritime Proving and Evaluation Unit in an Argus aircraft equipped with a Motorola APS-94D SLAR; the March flight also covered two lines in the Arctic Ocean, from Alert 10 the North Pole and from the Pole down the long. 4ºE. meridian to the ice edge at about lat. 80º N. No observations on the ground were possible, but -some back-up was available on all flights from visual observations recorded in the air, and on the March flight from infrared line-scan and vertical photography.The interpretation of ice features from the SLAR imagery is discussed, and the conclusion reached that in spite of certain ambiguities the technique has great potential which will increase with improving resolution, Extent of coverage per distance flown and independence of light and cloud conditions make it unique among airborne sensors.


2020 ◽  
Vol 117 (42) ◽  
pp. 26069-26075
Author(s):  
Anne de Vernal ◽  
Claude Hillaire-Marcel ◽  
Cynthia Le Duc ◽  
Philippe Roberge ◽  
Camille Brice ◽  
...  

The impact of the ongoing anthropogenic warming on the Arctic Ocean sea ice is ascertained and closely monitored. However, its long-term fate remains an open question as its natural variability on centennial to millennial timescales is not well documented. Here, we use marine sedimentary records to reconstruct Arctic sea-ice fluctuations. Cores collected along the Lomonosov Ridge that extends across the Arctic Ocean from northern Greenland to the Laptev Sea were radiocarbon dated and analyzed for their micropaleontological and palynological contents, both bearing information on the past sea-ice cover. Results demonstrate that multiyear pack ice remained a robust feature of the western and central Lomonosov Ridge and that perennial sea ice remained present throughout the present interglacial, even during the climate optimum of the middle Holocene that globally peaked ∼6,500 y ago. In contradistinction, the southeastern Lomonosov Ridge area experienced seasonally sea-ice-free conditions, at least, sporadically, until about 4,000 y ago. They were marked by relatively high phytoplanktonic productivity and organic carbon fluxes at the seafloor resulting in low biogenic carbonate preservation. These results point to contrasted west–east surface ocean conditions in the Arctic Ocean, not unlike those of the Arctic dipole linked to the recent loss of Arctic sea ice. Hence, our data suggest that seasonally ice-free conditions in the southeastern Arctic Ocean with a dominant Arctic dipolar pattern, may be a recurrent feature under “warm world” climate.


Sign in / Sign up

Export Citation Format

Share Document