Extratropical Forcing of Submonthly Variations of Rainfall in Vietnam

2019 ◽  
Vol 32 (8) ◽  
pp. 2329-2348 ◽  
Author(s):  
Bui Minh Tuan

Abstract An EOF analysis is applied to high-resolution Vietnam Gridded Precipitation anomalies to support the notion that the characteristics of intraseasonal oscillation (ISO) of rainfall in Vietnam are distinct from location to location and highly affected by topography. Power spectral analysis reveals that the ISO of rainfall in Vietnam is dominated by submonthly-scale ISO (SISO), which is most active in September–October. The rainfall SISO shows remarkable relationships with heavy rainfall days in the Red River Delta and Mid-Central and Central Highlands but relatively weak correlations with heavy rainfall days in the Northeast and Southern Plain. A composite technique applied to filtered OLR and ERA-Interim shows that the first four principal components (PCs) of the rainfall SISO involve four different processes that closely relate to extratropical systems. The rainfall SISO in the PC1 is governed by interaction between the pressure surge induced by the submonthly amplifications of the Siberian high and tropical depressions (TDs). Rainfall SISO in PC2 is modulated by the convergence of the southward excursion of the polar air mass and TD-type waves. Rainfall SISO in PC3 is generated by the quasigeostrophic lifting of the extratropical wave train associated with TD-type waves. The effect of upstream development of the wave train from the North Pacific and TD-type wave is the key process inducing the rainfall SISO in PC4.

2018 ◽  
Vol 31 (14) ◽  
pp. 5485-5506 ◽  
Author(s):  
Zhiqi Zhang ◽  
Xuguang Sun ◽  
Xiu-Qun Yang

Abstract East Asian summer monsoon precipitation (EASMP) features complicated interdecadal variability with multiple time periods and spatial patterns. Using century-long datasets of HadISST, CRU precipitation, and the ECMWF twentieth-century reanalysis (ERA-20C), this study examines the joint influence of three oceanic interdecadal signals [i.e., Pacific decadal oscillation (PDO), Atlantic multidecadal oscillation (AMO), and Indian Ocean Basin mode (IOBM)] on the EASMP, which, however, is found not to be simply a linear combination of their individual effects. When PDO and AMO are out of phase, the same-sign SST anomalies occur in the North Pacific and North Atlantic, and a zonally orientated teleconnection wave train appears across the Eurasian mid-to-high latitudes, propagating from the North Atlantic to northern East Asia along the Asian westerly jet waveguide. Correspondingly, the interdecadal precipitation anomalies are characterized by a meridional tripole mode over eastern China. When PDO and AMO are in phase, with opposite sign SST anomalies in the North Pacific and North Atlantic, the sandwich pattern of anomalous stationary Rossby wavenumber tends to reduce the effect of the waveguide in the eastern Mediterranean region, and the teleconnection wave train from the North Atlantic travels only to western central Asia along a great circle route, causing Indian summer monsoon precipitation (ISMP) anomalies. The ISMP anomalies, in turn, interact with the teleconnection wave train induced by the PDO and AMO, leading to a meridional dipole mode of interdecadal precipitation anomalies over eastern China. Through the impact on the ISMP, the IOBM exerts significantly linear modulation on the combined impacts of PDO and AMO, especially over northern East Asia.


2019 ◽  
Vol 32 (20) ◽  
pp. 6859-6873
Author(s):  
Liudan Ding ◽  
Tim Li ◽  
Baoqiang Xiang ◽  
Melinda Peng

Abstract Hurricane Sandy (2012) experienced an unusual westward turning and made landfall in New Jersey after its northward movement over the Atlantic Ocean. The landfall caused severe casualties and great economic losses. The westward turning took place in the midlatitude Atlantic where the climatological mean wind is eastward. The cause of this unusual westward track is investigated through both observational analysis and model simulations. The observational analysis indicates that the hurricane steering flow was primarily controlled by atmospheric intraseasonal oscillation (ISO), which was characterized by a pair of anticyclonic and cyclonic circulation systems. The anticyclone to the north was part of a global wave train forced by convection over the tropical Indian Ocean through Rossby wave energy dispersion, and the cyclone to the south originated from the tropical Atlantic through northward propagation. Hindcast experiments using a global coupled model show that the model is able to predict the observed circulation pattern as well as the westward steering flow 6 days prior to Sandy’s landfall. Sensitivity experiments with different initial dates confirm the important role of the ISO in establishing the westward steering flow in the midlatitude Atlantic. Thus the successful numerical model experiments suggest a potential for extended-range dynamical tropical cyclone track predictions.


2011 ◽  
Vol 24 (3) ◽  
pp. 942-961 ◽  
Author(s):  
Pang-Chi Hsu ◽  
Tim Li

Abstract The interactions between the boreal summer intraseasonal oscillation (ISO) and synoptic-scale variability (SSV) are investigated by diagnosing the atmospheric apparent heat source (Q1), apparent moisture sink (Q2), and eddy momentum transport. It is found that the synoptic Q1 and Q2 heating (cooling) anomalies are in phase with cyclonic (anticyclonic) vorticity disturbances, aligned in a southeast–northwest-oriented wave train pattern over the western North Pacific (WNP). The wave train is well organized and strengthened (loosely organized and weakened) during the ISO active (suppressed) phase. The nonlinearly rectified Q1 and Q2 fields due to the eddy–mean flow interaction account for 10%–30% of the total intraseasonal Q1 and Q2 variabilities over the WNP. During the ISO active (suppressed) phase, the nonlinearly rectified intraseasonal Q1 and Q2 heating (cooling) appear to the northwest of the ISO enhanced (suppressed) convection center, favoring the northwestward propagation of the ISO. A diagnosis of the zonal momentum budget shows that the eddy momentum flux convergence forces an intraseasonal westerly (easterly) tendency to the north of the ISO westerly (easterly) center during the ISO active (suppressed) phase. As a result, the eddy momentum transport may contribute to the northward propagation of the boreal summer ISO over the WNP.


2022 ◽  
Author(s):  
Lu Wang ◽  
Jie Jiang ◽  
Tim Li

Abstract The southern China (SC) exhibits a strong intraseasonal precipitation variability in boreal winter, but so far the relative contributions of the tropical Madden-Julian Oscillation (MJO) and the mid-latitude intraseasonal oscillation (ISO) is unclear. This issue is addressed through a cluster analysis. The result shows that 53% of strong intraseasonal precipitation events are unrelated to the MJO. They are caused by southward propagation of a low-pressure anomaly in the lower troposphere from higher latitudes. Southerly anomalies associated with the low-pressure system transport high mean moisture from South China Sea, leading to moisture accumulation over SC. 47% of the events are accompanied by the MJO, and they can be further divided into two groups: one with enhanced MJO convection over the eastern Indian Ocean (termed as IO group), and the other over the Maritime Continent (termed as MC group). For the IO group, the SC precipitation is triggered by low-level southerly anomalies associated with an anomalous anticyclone over the western North Pacific (WNP) in association with suppressed MJO convection in situ, as well as the upper-tropospheric divergence related to a wave train excited from the MJO convection. For the MC group, both the upper-tropospheric wave train related to MJO and the southward propagation of low-pressure anomaly from higher latitudes in the lower troposphere contribute to trigger the SC precipitation.


2012 ◽  
Vol 25 (14) ◽  
pp. 5072-5087 ◽  
Author(s):  
Jau-Ming Chen ◽  
Ching-Feng Shih

Abstract Tropical cyclones (TCs) of a particular track type move northward along the open oceans to the east of Taiwan and later pass over or near northern Taiwan. Their northward movement may be associated with intensified monsoon southwesterly flows from the northern South China Sea (SCS) toward Taiwan. Prolonged heavy rainfall then occurs in western Taiwan across the landfall and postlandfall periods, leading to severe floods. Characteristics of this TC–southwesterly flow association and related large-scale regulatory processes of intraseasonal oscillations (ISOs) are studied. For summers from 1958 to 2009, 16 out of 108 TCs affecting Taiwan exhibit the aforementioned northward-moving track. Among them, four TCs (25%) concur with enhanced southwesterly flows. Intensified moisture supplies from the SCS result in strong moisture convergence and prolonged heavy rainfall in western Taiwan. Both 30–60- and 10–24-day ISOs make positive contributions to the TC–southwesterly flow association. Both ISOs exhibit the northward progress of a meridional circulation pair from the tropics toward Taiwan. During landfall and the ensuing few days, Taiwan is surrounded by a cyclonic anomaly to the north and an anticyclonic anomaly to the south of these two ISOs. The appearance of anomalous southwesterly–westerly flows acts to prolong heavy rainfall in western Taiwan after the departure of a TC. The TC–southwesterly flow association tends to occur during the minimum phase of the 30–60-day ISO featuring a cyclonic anomaly in the vicinity of Taiwan but in various phases of the 10–24-day ISO. Rainfall in western Taiwan increases when these two ISOs simultaneously exhibit a cyclonic anomaly to the north of Taiwan.


1971 ◽  
Vol 61 (2) ◽  
pp. 357-373
Author(s):  
Hilmar Bungum ◽  
Eivind Rygg ◽  
Leif Bruland

abstract Power spectral analysis in frequency-wavenumber space and coherence studies in lag space have shown that the noise recorded by the short period Øyer subarray at NORSAR is critically dependent on the weather situation in the North Atlantic Ocean. In addition to the low-frequency noise from the west, there is observed 2-sec microseisms from the Baltic Sea. Because of the nonisotropic noise, the coherence is usually strongly azimuthal dependent, being represented in lag space by ellipses. Large time variations of the coherence are demonstrated.


2007 ◽  
Vol 29 (3) ◽  
pp. 415-426
Author(s):  
Pham Van Ninh ◽  
Phan Ngoc Vinh ◽  
Nguyen Manh Hung ◽  
Dinh Van Manh

Overall the evolution process of the Red River Delta based on the maps and historical data resulted in a fact that before the 20th century all the Nam Dinh coastline was attributed to accumulation. Then started the erosion process at Xuan Thuydistrict and from the period of 1935 - 1965 the most severe erosion was contributed in the stretch from Ha Lan to Hai Trieu, 1965 - 1990 in Hai Chinh - Hai Hoa, 1990 - 2005 in the middle part of Hai Chinh - Hai Thinh (Hai Hau district). The adjoining stretches were suffered from not severe erosion. At the same time, the Ba Lat mouth is advanced to the sea and to the North and South direction by the time with a very high rate.The first task of the mathematical modeling of coastal line evolution of Hai Hau is to evaluate this important historical marked periods e. g. to model the coastal line at the periods before 1900, 1935 - 1965; 1965 - 1990; 1990 - 2005. The tasks is very complicated and time and working labors consuming.In the paper, the primarily results of the above mentioned simulations (as waves, currents, sediments transports and bottom - coastal lines evolution) has been shown. Based on the obtained results, there is a strong correlation between the protrusion magnitude and the southward moving of the erosion areas.


Sign in / Sign up

Export Citation Format

Share Document