scholarly journals A Northern Hemispheric Wave Train Associated with Interannual Variations in the Bermuda High During Boreal Summer

2021 ◽  
pp. 1-34
Author(s):  
Haochang Luo ◽  
Ángel F. Adames ◽  
Richard B. Rood

AbstractThe processes that lead to the spatial and temporal evolution of the Bermuda High (BH) during July and August (JA) are investigated on the basis of linear regression analysis. The analysis is based on a Bermuda high index (BHI): the difference in standardized, deseasonalized and detrended sea-level pressure (SLP) between northeast of Bermuda (40°N, 60°W) and New Orleans (30°N 90°W). Negative values of BHI indicate a westward expansion of the Bermuda High relative to its climatological-mean location and reduced precipitation in the southeastern US (SEUS), whereas positive values correspond to BH contraction and enhanced precipitation in the SEUS. Linear regression of the 200 hPa geopotential height based on the BHI reveals the existence of a Rossby wave train that extends zonally from the eastern north Pacific to the eastern-north Atlantic. The troughs and ridges associated with this wave train are spatially collocated with the climatological-mean jet stream, indicating that the jet serves as their waveguide. Anomalous troughing in the SEUS associated with this wave train is linked to the contraction of the Bermuda high during JA. The enhanced precipitation is associated with anomalous ascent to the east and south of this trough where anomalous warm advection is observed. Based on these results, it is hypothesized that this Rossby wave train may partially explain the occurrence of suppressed precipitation tied to midsummer drought in the SEUS during July and August. It is found that the BHI has trended from negative to positive in recent decades, suggesting that it may be influenced by low-frequency variability.

2005 ◽  
Vol 62 (12) ◽  
pp. 4423-4440 ◽  
Author(s):  
Koutarou Takaya ◽  
Hisashi Nakamura

Abstract Mechanisms of intraseasonal amplification of the Siberian high are investigated on the basis of composite anomaly evolution for its strongest events at each of the grid points over Siberia. At each location, the amplification of the surface high is associated with formation of a blocking ridge in the upper troposphere. Over central and western Siberia, what may be called “wave-train (Atlantic-origin)” type is common, where a blocking ridge forms as a component of a quasi-stationary Rossby wave train propagating across the Eurasian continent. A cold air outbreak follows once anomalous surface cold air reaches the northeastern slope of the Tibetan Plateau. It is found through the potential vorticity (PV) inversion technique that interaction between the upper-level stationary Rossby wave train and preexisting surface cold anomalies is essential for the strong amplification of the surface high. Upper-level PV anomalies associated with the wave train reinforce the cold anticyclonic anomalies at the surface by inducing anomalous cold advection that counteracts the tendency of the thermal anomalies themselves to migrate eastward as surface thermal Rossby waves. The surface cold anomalies thus intensified, in turn, act to induce anomalous vorticity advection aloft that reinforces the blocking ridge and cyclonic anomalies downstream of it that constitute the propagating wave train. The baroclinic development of the anomalies through this vertical coupling is manifested as a significant upward flux of wave activity emanating from the surface cold anomalies, which may be interpreted as dissipative destabilization of the incoming external Rossby waves.


2021 ◽  
Vol 34 (1) ◽  
pp. 397-414
Author(s):  
Guosen Chen

AbstractA recent study has revealed that the Madden–Julian oscillation (MJO) during boreal winter exhibits diverse propagation patterns that consist of four archetypes: standing MJO, jumping MJO, slow eastward propagating MJO, and fast eastward propagating MJO. This study has explored the diversity of teleconnection associated with these four MJO groups. The results reveal that each MJO group corresponds to distinct global teleconnections, manifested as diverse upper-tropospheric Rossby wave train patterns. Overall, the teleconnections in the fast and slow MJO are similar to those in the canonical MJO constructed by the real-time multivariate MJO (RMM) indices, while the teleconnections in the jumping and standing MJO generally lose similarities to those in the canonical MJO. The causes of this diversity are investigated using a linearized potential vorticity equation. The various MJO tropical heating patterns in different MJO groups are the main cause of the diverse MJO teleconnections, as they induce assorted upper-level divergent flows that act as Rossby-wave sources through advecting the background potential vorticity. The variation of the Asian jet could affect the teleconnections over the Pacific jet exit region, but it plays an insignificant role in causing the diversity of global teleconnections. The numerical investigation with a linear baroclinic model shows that the teleconnections can be interpreted as linear responses to the MJO’s diabatic heating to various degrees for different MJO groups, with the fast and slow MJO having higher linear skill than the jumping and standing MJO. The results have broad implications in the MJO’s tropical–extratropical interactions and the associated impacts on global weather and climate.


2019 ◽  
Author(s):  
Fang Wu ◽  
Houfa Yin ◽  
Xinyi Chen ◽  
Yabo Yang

Abstract Background To evaluate the differences between the predicted and achieved lenticule thickness (ΔLT) after small incision lenticule extraction (SMILE) surgery and investigate relationships between ΔLT and refractive errors or lenticule depth in SMILE. Methods A total of 184 eyes from 184 consecutive patients who underwent SMILE were included in this prospective study. One eye for each patient was randomly selected and included for statistical analysis. An ultrasound pachymetry measurement and Scheimpflug camera corneal topography were obtained before and at 3 months after SMILE. The achieved lenticule thickness was calculated by comparing the preoperative examinations with postoperative examinations using ultrasound pachymetry and Pentacam software measurements. The pupil center and corneal vertex were selected as the 2 locations for measurement calculation on Pentacam. Analysis of variance (ANOVA) was performed to compare mean pachymetry values using different instruments. An independent t test was performed to evaluate the difference in ΔLT between different cap thicknesses. Linear regression analyses were performed between the VisuMax readout lenticule thicknesses and the measured maximum corneal change, the preoperative spherical equivalent (SE) and each ΔLT. Results On average, the achieved lenticule thickness measured with ultrasound pachymetry was 13.02 ± 8.87 μm thinner than the VisuMax readout lenticule thickness. Linear regression analysis showed significant relationships between the predicted and each achieved lenticule thickness. The preoperative SE was significantly related to each ΔLT (ultrasound: R2 =0.279; at corneal vertex: R2 =0.252; at pupil center R2 =0.246). The ΔLT measured by ultrasound pachymetry was significantly smaller in the thick cap group (cap thickness above 120 μm) than in the thin cap group (P < 0.01). Conclusions An overestimation of achieved lenticule thickness was found in this study. The ΔLT was related to the preoperative SE correction. Furthermore a lager ΔLT was found under a thin cap.


2020 ◽  
Vol 33 (1) ◽  
pp. 365-389 ◽  
Author(s):  
Lon L. Hood ◽  
Malori A. Redman ◽  
Wes L. Johnson ◽  
Thomas J. Galarneau

AbstractThe tropical Madden–Julian oscillation (MJO) excites a northward propagating Rossby wave train that largely determines the extratropical surface weather consequences of the MJO. Previous work has demonstrated a significant influence of the tropospheric El Niño–Southern Oscillation (ENSO) on the characteristics of this wave train. Here, composite analyses of ERA-Interim sea level pressure (SLP) and surface air temperature (SAT) data during the extended northern winter season are performed to investigate the additional role of stratospheric forcings [the quasi-biennial oscillation (QBO) and the 11-yr solar cycle] in modifying the wave train and its consequences. MJO phase composites of 20–100-day filtered data for the two QBO phases show that, similar to the cool phase of ENSO, the easterly phase of the QBO (QBOE) produces a stronger wave train and associated modulation of SLP and SAT anomalies. In particular, during MJO phases 5–7, positive SLP and negative SAT anomalies in the North Atlantic/Eurasian sector are enhanced during QBOE relative to the westerly phase of the QBO (QBOW). The opposite occurs during the earliest MJO phases. SAT anomalies over eastern North America are also more strongly modulated during QBOE. Although less certain because of the short data record, there is some evidence that the minimum phase of the solar cycle (SMIN) produces a similar increased modulation of SLP and SAT anomalies. The strongest modulations of SLP and SAT anomalies are produced when two or more of the forcings are superposed (e.g., QBOE/cool ENSO, SMIN/QBOE, etc.).


2020 ◽  
Vol 33 (9) ◽  
pp. 3619-3633 ◽  
Author(s):  
Tingting Gong ◽  
Steven B. Feldstein ◽  
Sukyoung Lee

AbstractThe relationship between latent heating over the Greenland, Barents, and Kara Seas (GBKS hereafter) and Rossby wave propagation between the Arctic and midlatitudes is investigated using global reanalysis data. Latent heating is the focus because it is the most likely source of Rossby wave activity over the Arctic Ocean. Given that the Rossby wave time scale is on the order of several days, the analysis is carried out using a daily latent heating index that resembles the interdecadal latent heating trend during the winter season. The results from regression calculations find a trans-Arctic Rossby wave train that propagates from the subtropics, through the midlatitudes, into the Arctic, and then back into midlatitudes over a period of about 10 days. Upon entering the GBKS, this wave train transports moisture into the region, resulting in anomalous latent heat release. At high latitudes, the overlapping of a negative latent heating anomaly with an anomalous high is consistent with anomalous latent heat release fueling the Rossby wave train before it propagates back into the midlatitudes. This implies that the Rossby wave propagation from the Arctic into the midlatitudes arises from trans-Arctic wave propagation rather than from in situ generation. The method used indicates the variance of the trans-Arctic wave train, but not in situ generation, and implies that the variance of the former is greater than that of latter. Furthermore, GBKS sea ice concentration regression against the latent heating index shows the largest negative value six days afterward, indicating that sea ice loss contributes little to the latent heating.


2006 ◽  
Vol 63 (5) ◽  
pp. 1377-1389 ◽  
Author(s):  
Tim Li ◽  
Bing Fu

Abstract The structure and evolution characteristics of Rossby wave trains induced by tropical cyclone (TC) energy dispersion are revealed based on the Quick Scatterometer (QuikSCAT) and Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) data. Among 34 cyclogenesis cases analyzed in the western North Pacific during 2000–01 typhoon seasons, six cases are associated with the Rossby wave energy dispersion of a preexisting TC. The wave trains are oriented in a northwest–southeast direction, with alternating cyclonic and anticyclonic vorticity circulation. A typical wavelength of the wave train is about 2500 km. The TC genesis is observed in the cyclonic circulation region of the wave train, possibly through a scale contraction process. The satellite data analyses reveal that not all TCs have a Rossby wave train in their wakes. The occurrence of the Rossby wave train depends to a certain extent on the TC intensity and the background flow. Whether or not a Rossby wave train can finally lead to cyclogenesis depends on large-scale dynamic and thermodynamic conditions related to both the change of the seasonal mean state and the phase of the tropical intraseasonal oscillation. Stronger low-level convergence and cyclonic vorticity, weaker vertical shear, and greater midtropospheric moisture are among the favorable large-scale conditions. The rebuilding process of a conditional unstable stratification is important in regulating the frequency of TC genesis.


2021 ◽  
Author(s):  
Bianca Mezzina ◽  
Froila M. Palmeiro ◽  
Javier García-Serrano ◽  
Ileana Bladé ◽  
Lauriane Batté ◽  
...  

AbstractThe impact of El Niño-Southern Oscillation (ENSO) on the late-winter extra-tropical stratosphere (January–March) is assessed in a multi-model framework. Three state-of-the-art atmospheric models are run with prescribed SST anomalies representative of a strong ENSO event, with symmetric patterns for El Niño and La Niña. The well-known temperature perturbation in the lower stratosphere during El Niño is captured by two models, in which the anomalous warming at polar latitudes is accompanied by a positive geopotential height anomaly that extends over the polar cap. In the third model, which shows a lack of temperature anomalies over the pole, the anomalous anticyclone is confined over Canada and does not expand to the polar cap. This anomalous center of action emerges from the large-scale tropospheric Rossby wave train forced by ENSO, and shrinking/stretching around the polar vortex is invoked to link it to the temperature response. No disagreement across models is found in the lower stratosphere for La Niña, whose teleconnection is opposite in sign but weaker. In the middle-upper stratosphere (above 50 hPa) the geopotential height anomalies project on a wavenumber-1 (WN1) pattern for both El Niño and, more weakly, La Niña, and show a westward tilt with height up to the stratopause. It is suggested that this WN1 pattern arises from the high-latitude lower-stratospheric anomalies, and that the ENSO teleconnection to the polar stratosphere can be interpreted in terms of upward propagation of the stationary Rossby wave train and quasi-geostrophic balance, instead of wave breaking.


2020 ◽  
Author(s):  
dingwen zeng ◽  
xing yuan

&lt;p&gt;Northeast China (NEC) suffered its worst persistent drought event in recent decades from March to July of 2017 with devastating impacts on the environment and agriculture. Previous drought mechanism studies focused on the atmospheric&amp;#160;remote&amp;#160;response to Arctic sea ice and ENSO, while less attention was paid to synergistic effects of large-scale teleconnections and local land-atmosphere coupling. Here we show that a strong positive phase of Arctic Oscillation in March triggered the NEC drought, and a quasi-stationary Rossby wave train maintained the drought with an anticyclone located over the area south to Lake Baikal (ASLB) in April-July. By using a land-atmosphere coupling index based on the persistence of positive feedback between boundary layer and land surface, we find that the NEC and ASLB experienced a wet coupling in March while a persistently strengthened dry coupling in April-July. Over ASLB, the dry coupling and sinking motion increased surface sensible heat, decreased cloud cover, and weakened longwave absorption, resulting in a diabatic heating anomaly in the lower atmosphere and a diabatic cooling anomaly in the upper atmosphere. This anomalous vertical heating profile generated a negative anomaly of potential vorticity, indicating that the land-atmosphere coupling had a phase-lock effect on the Rossby wave train originating from upstream areas, and therefore maintained the NEC drought over downstream regions. Numerical simulations with and without surface sensible heating are being conducted to verify the influence of teleconnected land-atmosphere coupling, i.e., dry land conditions over ASLB in May can cause positive height anomaly over ASLB and NEC during June-July through heating the low level atmosphere. Our study suggests that upstream quasi-stationary wave pattern strengthened by land-atmosphere coupling should be considered in diagnosing persistent droughts especially over northern mid-latitudes.&lt;/p&gt;


2020 ◽  
pp. 1-60
Author(s):  
Siegfried D. Schubert ◽  
Yehui Chang ◽  
Anthony M. DeAngelis ◽  
Hailan Wang ◽  
Randal D. Koster

AbstractMuch of the southeast United States experienced record dry conditions during September of 2019, with the area in abnormally dry to exceptional drought conditions growing from 25% at the beginning of the month to 80% by the end of the month. The drought ended just as abruptly due to above normal rain that fell during the second half of October. In this study we employed MERRA-2 and the GEOS-5 AGCM to diagnose the underlying causes of the drought’s onset, maintenance, and demise. The basic approach involves performing a series of AGCM simulations in which the model is constrained to remain close to MERRA-2 over pre-specified areas that are external to the drought region. The start of the drought appears to have been forced by anomalous heating in the central/western tropical Pacific that resulted in low level anti-cyclonic flow and a tendency for descending motion over much of the southeast. An anomalous ridge associated with a Rossby wave train (emanating from the Indian Ocean region) is found to be the main source of the most intense temperature and precipitation anomalies that develop over the southeast during the last week of September. A second Rossby wave train (emanating from the same region) is responsible for the substantial rain that fell during the second half of October to end the drought. The links to the Indian Ocean Dipole (with record positive values) as well as a waning El Nino allow some speculation as to the likelihood of similar events occurring in the future.


2020 ◽  
Vol 6 (2) ◽  
pp. 80
Author(s):  
Eko Solihin ◽  
Sukardi Sukardi

This research aims to know and analyze the effect of application of control valve Cooler 1 Based On atmega 2560 microcontroller for Moisture feed after mixing with bagging off at PT. JAPFA comfeed Indonesia, Tbk. Unit Padang. The type of research used is the study of surveys with the analysis of data used i.e. simple linear regression analysis. Based on the results of the study, testing of normality obtained the significance value of 0.200 with normal categories and R square test results worth 29.4%. The results of simple linear regression test partially with T test, Mempertlihatkan that the application of the control valve Cooler 1-Base atmega 2560 microcontroller system significantly affects the after-mixing Moisture feed with bagging off. The interpretation is that each temperature reduction of the resulting control valve cooler 1 Microcontroller-Based atmega 2560 in one unit affects the difference of moisture feed after mixing with a bagging off of 2.425.


Sign in / Sign up

Export Citation Format

Share Document