scholarly journals The Regional Water Cycle and Heavy Spring Rainfall in Iowa: Observational and Modeling Analyses from the IFloodS Campaign

2016 ◽  
Vol 17 (11) ◽  
pp. 2763-2784 ◽  
Author(s):  
Young-Hee Ryu ◽  
James A. Smith ◽  
Mary Lynn Baeck ◽  
Luciana K. Cunha ◽  
Elie Bou-Zeid ◽  
...  

Abstract The regional water cycle is examined with a special focus on water vapor transport in Iowa during the Iowa Flood Studies (IFloodS) campaign period, April–June 2013. The period had exceptionally large rainfall accumulations, and rainfall was distributed over an unusually large number of storm days. Radar-derived rainfall fields covering the 200 000 km2 study region; precipitable water from a network of global positioning system (GPS) measurements; and vertically integrated water vapor flux derived from GPS precipitable water, radar velocity–azimuth display (VAD) wind profiles, and radiosonde humidity profiles are utilized. They show that heavy rainfall is relatively weakly correlated with precipitable water and precipitable water change, with somewhat stronger direct relationships to water vapor flux. Thermodynamic properties tied to the vertical distribution of water vapor play an important role in determining heavy rainfall distribution, especially for periods of strong southerly water vapor flux. The diurnal variation of the water cycle during the IFloodS field campaign is pronounced, especially for rainfall and water vapor flux. To examine the potential effects of relative humidity in the lower atmosphere on heavy rainfall, numerical simulations are performed. It is found that low-level moisture can greatly affect heavy rainfall amount under favorable large-scale environmental conditions.

2021 ◽  
Author(s):  
Hongmei Ren ◽  
Ang Li ◽  
Pinhua Xie ◽  
Zhaokun Hu ◽  
Jin Xu ◽  
...  

<p>      Water vapor transport affects regional precipitation and climate change. The measurement of precipitable water and water vapor flux is of great significance to the study of precipitation and water vapor transport. In the study, a new method of computing the precipitable water and estimating the water vapor transport flux using multi-axis differential optical absorption spectroscopy (MAX-DOAS) were presented. The calculated precipitable water and water vapor flux were compared to the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data and the correlation coefficient of the precipitable water, the zonal and meridional water vapor flux and ECMWF are r≥0.92, r=0.77 and r≥0.89, respectively. The seasonal and diurnal climatologies of precipitable water and water vapor flux in the coastal (Qingdao) and inland (Xi’an) cities of China using this method were analyzed from June 1, 2019 to May 31, 2020. The results indicated that the seasonal and diurnal variation characteristics of the precipitable water in the two cities were similar. The zonal fluxes of the two cities were mainly transported from west to east, Qingdao's meridional flux was mainly transported to the south, and Xi'an was mainly transported to the north. The results also indicated that the water vapor flux transmitting belts appear near 2km and 1.4km above the surface in Qingdao and appeared around 2.8km, 1.6km and 1.0km in Xi'an. </p>


2019 ◽  
Vol 32 (17) ◽  
pp. 5659-5676 ◽  
Author(s):  
Biao Chen ◽  
Huiling Qin ◽  
Guixing Chen ◽  
Huijie Xue

Abstract The sea surface salinity (SSS) varies largely as a result of the evaporation–precipitation difference, indicating the source or sink of regional/global water vapor. This study identifies a relationship between the spring SSS in the tropical northwest Pacific (TNWP) and the summer rainfall of the East Asian monsoon region (EAMR) during 1980–2017. Analysis suggests that the SSS–rainfall link involves the coupled ocean–atmosphere–land processes with a multifacet evolution. In spring, evaporation and water vapor flux divergence were enhanced in some years over the TNWP where an anomalous atmospheric anticyclone was established and a high SSS was well observed. As a result, the convergence of water vapor flux and soil moisture over the EAMR was strengthened. This ocean-to-land water vapor transport pattern was sustained from spring to summer and played a leading role in the EAMR rainfall. Moreover, the change in local spring soil moisture helped to amplify the summer rainfall by modifying surface thermal conditions and precipitation systems over the EAMR. As the multifacet evolution is closely related to the large-scale ocean-to-land water vapor transport, it can be well represented by the spring SSS in the TNWP. A random forest regression algorithm was used to further evaluate the relative importance of spring SSS in predicting summer rainfall compared to other climate indices. As the SSS is now monitored routinely by satellite and the global Argo float array, it can serve as a good metric for measuring the water cycle and as a precursor for predicting the EAMR rainfall.


2015 ◽  
Vol 16 (1) ◽  
pp. 70-87 ◽  
Author(s):  
Young-Hee Ryu ◽  
James A. Smith ◽  
Elie Bou-Zeid

Abstract The seasonal and diurnal climatologies of precipitable water and water vapor flux in the mid-Atlantic region of the United States are examined. A new method of computing water vapor flux at high temporal resolution in an atmospheric column using global positioning system (GPS) precipitable water, radiosonde data, and velocity–azimuth display (VAD) wind profiles is presented. It is shown that water vapor flux exhibits striking seasonal and diurnal cycles and that the diurnal cycles exhibit rapid transitions over the course of the year. A particularly large change in the diurnal cycle of meridional water vapor flux between spring and summer seasons is found. These features of the water cycle cannot be resolved by twice-a-day radiosonde observations. It is also shown that precipitable water exhibits a pronounced seasonal cycle and a less pronounced diurnal cycle. There are large contrasts in the climatology of water vapor flux between precipitation and nonprecipitation conditions in the mid-Atlantic region. It is hypothesized that the seasonal transition of large-scale flow environments and the change in the degree of differential heating in the mountainous and coastal areas are responsible for the contrasting diurnal cycle between spring and summer seasons.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3620
Author(s):  
Maoshan Li ◽  
Lingzhi Wang ◽  
Na Chang ◽  
Ming Gong ◽  
Yaoming Ma ◽  
...  

Changes in the surface fluxes cause changes in the annular flow field over a region, and they affect the transport of water vapor. To study the influence of the changes in the surface flux on the water vapor transport in the upper layer in the canyon area of southeastern Tibet, in this study, the water vapor transport characteristics were analyzed using the HYSPLIT_v4 backward trajectory model at Danka and Motuo stations in the canyons in the southeastern Tibetan Plateau from November 2018 to October 2019. Then, using ERA-5 reanalysis data from 1989 to 2019 and the characteristics of the high-altitude water vapor transportation, the impact of the surface flux changes on the water vapor transportation was analyzed using singular value decomposition (SVD). The results show that the main sources of the water vapor in the study area were from the west and southwest during the non-Asian monsoon (non-AMS), while there was mainly southwest air flow and a small amount of southeast air flow in the lower layer during the Asian monsoon (AMS) at the stations in southeastern Tibet. The water vapor transmission channel of the westward airflow is higher than 3000 m, and the water vapor transmission channel of the southwestward and southeastward airflow is about 2000 m. The sensible heat and latent heat are negatively correlated with water vapor flux divergence. The southwest boundary of southeastern Tibet is a key area affecting water vapor flux divergence. When the sensible heat and latent heat exhibit downward trends during the non-Asian monsoon season, the eastward water vapor flux exhibits an upward trend. During the Asian monsoon season, when the sensible heat and latent heat in southeastern Tibet increase as a whole, the eastward water vapor flux in the total-column of southeastern Tibet increases.


1972 ◽  
Vol 3 (1) ◽  
pp. 22-43 ◽  
Author(s):  
JOSE P. PEIXOTO

The present study gives a discussion of the water balance on a planetary scale during the IGY covering the mean and the seasonal conditions for the calendar year 1958. The study includes analyses of the amount of precipitable water, of the vertically integrated transport vector field and of the divergence of water vapor flux for all the globe. Some implications of the water vapor distribution in the atmosphere, its transport, and divergence fields are deduced which bear some importance for hydrology. The water balance based upon the various water vapor fields is examined and the inferred values obtained from the analysis of the water vapor divergence field are compared with estimates of evaporation and precipitation obtained from independent climatological sources.


2021 ◽  
Vol 10 (13) ◽  
pp. e456101321256
Author(s):  
José Felipe Gazel Menezes ◽  
Enilson Palmeira Cavalcanti ◽  
Eduardo da Silva Margalho ◽  
Leticia Karyne da Silva Cardoso ◽  
Matheus Richard Araújo

This case study analyzes water vapor flux that is vertically integrated into the atmosphere in episodes of the South Atlantic Convergence Zone (SACZ). The scope of this study is two cases that occurred between January and February 2018. We use the ERA-Interim reanalysis data from the European Center for Medium-Range Weather Forecasts (ECMWF) to build the maps of vertically integrated water vapor flux and its divergence. We use two 5º by 5º sub-areas, centralized over Belo Horizonte and São Paulo, as control for water vapor balance. The results point to the existence of water vapor transport from the Amazon region to Southeastern Brazil in association to the SACZ. Convergence areas of vertically integrated water vapor flux predominate along the Northwest-Southeast line. The two cases over the Belo Horizonte area presented an average of water vapor balance of -1.8 and -12.9 mm/day. The average at the São Paulo area was -3.6 and 2.0 mm/day. The negative values indicate that precipitation exceeded evapotranspiration, that is, the area served as a water vapor sink.


1977 ◽  
Vol 7 (3) ◽  
pp. 355-362 ◽  
Author(s):  
José Marques ◽  
Jesus Marden dos Santos ◽  
Nilson Augusto Villa Nova ◽  
Eneas Salati

Abstract The water vapor flux and precipitable water was computated over the natural Amazon forest in the stretch between Belem and Manaus for 1972. The atmospheric branch of hidrological cycle teory was applied and the most significant conclusions on an annual basis are: Atlantic Ocean water vapor contributes 52% to the regional precipitation and is significant the role played by local evapotranspiration in the precipitation in the area; there were signs of the phenomenon of water vapor recycling nearly throughout the year. Evapotranspiration contribute to 48% of the precipitations in the area studied. The real evapotranspiration estimated by this method was 1,000mm year-1.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1122
Author(s):  
Monica Ionita ◽  
Viorica Nagavciuc

The role of the large-scale atmospheric circulation in producing heavy rainfall events and floods in the eastern part of Europe, with a special focus on the Siret and Prut catchment areas (Romania), is analyzed in this study. Moreover, a detailed analysis of the socio-economic impacts of the most extreme flood events (e.g., July 2008, June–July 2010, and June 2020) is given. Analysis of the largest flood events indicates that the flood peaks have been preceded up to 6 days in advance by intrusions of high Potential Vorticity (PV) anomalies toward the southeastern part of Europe, persistent cut-off lows over the analyzed region, and increased water vapor transport over the catchment areas of Siret and Prut Rivers. The vertically integrated water vapor transport prior to the flood peak exceeds 300 kg m−1 s−1, leading to heavy rainfall events. We also show that the implementation of the Flood Management Plan in Romania had positive results during the 2020 flood event compared with the other flood events, when the authorities took several precaution measurements that mitigated in a better way the socio-economic impact and risks of the flood event. The results presented in this study offer new insights regarding the importance of large-scale atmospheric circulation and water vapor transport as drivers of extreme flooding in the eastern part of Europe and could lead to a better flood forecast and flood risk management.


2011 ◽  
Vol 284 (5) ◽  
pp. 1295-1298 ◽  
Author(s):  
Luca Fiorani ◽  
Francesco Colao ◽  
Antonio Palucci ◽  
Davod Poreh ◽  
Alessandro Aiuppa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document