scholarly journals Water vapor transport in cases of South Atlantic Convergence Zone (SACZ)

2021 ◽  
Vol 10 (13) ◽  
pp. e456101321256
Author(s):  
José Felipe Gazel Menezes ◽  
Enilson Palmeira Cavalcanti ◽  
Eduardo da Silva Margalho ◽  
Leticia Karyne da Silva Cardoso ◽  
Matheus Richard Araújo

This case study analyzes water vapor flux that is vertically integrated into the atmosphere in episodes of the South Atlantic Convergence Zone (SACZ). The scope of this study is two cases that occurred between January and February 2018. We use the ERA-Interim reanalysis data from the European Center for Medium-Range Weather Forecasts (ECMWF) to build the maps of vertically integrated water vapor flux and its divergence. We use two 5º by 5º sub-areas, centralized over Belo Horizonte and São Paulo, as control for water vapor balance. The results point to the existence of water vapor transport from the Amazon region to Southeastern Brazil in association to the SACZ. Convergence areas of vertically integrated water vapor flux predominate along the Northwest-Southeast line. The two cases over the Belo Horizonte area presented an average of water vapor balance of -1.8 and -12.9 mm/day. The average at the São Paulo area was -3.6 and 2.0 mm/day. The negative values indicate that precipitation exceeded evapotranspiration, that is, the area served as a water vapor sink.

2021 ◽  
Author(s):  
Hongmei Ren ◽  
Ang Li ◽  
Pinhua Xie ◽  
Zhaokun Hu ◽  
Jin Xu ◽  
...  

<p>      Water vapor transport affects regional precipitation and climate change. The measurement of precipitable water and water vapor flux is of great significance to the study of precipitation and water vapor transport. In the study, a new method of computing the precipitable water and estimating the water vapor transport flux using multi-axis differential optical absorption spectroscopy (MAX-DOAS) were presented. The calculated precipitable water and water vapor flux were compared to the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data and the correlation coefficient of the precipitable water, the zonal and meridional water vapor flux and ECMWF are r≥0.92, r=0.77 and r≥0.89, respectively. The seasonal and diurnal climatologies of precipitable water and water vapor flux in the coastal (Qingdao) and inland (Xi’an) cities of China using this method were analyzed from June 1, 2019 to May 31, 2020. The results indicated that the seasonal and diurnal variation characteristics of the precipitable water in the two cities were similar. The zonal fluxes of the two cities were mainly transported from west to east, Qingdao's meridional flux was mainly transported to the south, and Xi'an was mainly transported to the north. The results also indicated that the water vapor flux transmitting belts appear near 2km and 1.4km above the surface in Qingdao and appeared around 2.8km, 1.6km and 1.0km in Xi'an. </p>


2019 ◽  
Vol 32 (17) ◽  
pp. 5659-5676 ◽  
Author(s):  
Biao Chen ◽  
Huiling Qin ◽  
Guixing Chen ◽  
Huijie Xue

Abstract The sea surface salinity (SSS) varies largely as a result of the evaporation–precipitation difference, indicating the source or sink of regional/global water vapor. This study identifies a relationship between the spring SSS in the tropical northwest Pacific (TNWP) and the summer rainfall of the East Asian monsoon region (EAMR) during 1980–2017. Analysis suggests that the SSS–rainfall link involves the coupled ocean–atmosphere–land processes with a multifacet evolution. In spring, evaporation and water vapor flux divergence were enhanced in some years over the TNWP where an anomalous atmospheric anticyclone was established and a high SSS was well observed. As a result, the convergence of water vapor flux and soil moisture over the EAMR was strengthened. This ocean-to-land water vapor transport pattern was sustained from spring to summer and played a leading role in the EAMR rainfall. Moreover, the change in local spring soil moisture helped to amplify the summer rainfall by modifying surface thermal conditions and precipitation systems over the EAMR. As the multifacet evolution is closely related to the large-scale ocean-to-land water vapor transport, it can be well represented by the spring SSS in the TNWP. A random forest regression algorithm was used to further evaluate the relative importance of spring SSS in predicting summer rainfall compared to other climate indices. As the SSS is now monitored routinely by satellite and the global Argo float array, it can serve as a good metric for measuring the water cycle and as a precursor for predicting the EAMR rainfall.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3620
Author(s):  
Maoshan Li ◽  
Lingzhi Wang ◽  
Na Chang ◽  
Ming Gong ◽  
Yaoming Ma ◽  
...  

Changes in the surface fluxes cause changes in the annular flow field over a region, and they affect the transport of water vapor. To study the influence of the changes in the surface flux on the water vapor transport in the upper layer in the canyon area of southeastern Tibet, in this study, the water vapor transport characteristics were analyzed using the HYSPLIT_v4 backward trajectory model at Danka and Motuo stations in the canyons in the southeastern Tibetan Plateau from November 2018 to October 2019. Then, using ERA-5 reanalysis data from 1989 to 2019 and the characteristics of the high-altitude water vapor transportation, the impact of the surface flux changes on the water vapor transportation was analyzed using singular value decomposition (SVD). The results show that the main sources of the water vapor in the study area were from the west and southwest during the non-Asian monsoon (non-AMS), while there was mainly southwest air flow and a small amount of southeast air flow in the lower layer during the Asian monsoon (AMS) at the stations in southeastern Tibet. The water vapor transmission channel of the westward airflow is higher than 3000 m, and the water vapor transmission channel of the southwestward and southeastward airflow is about 2000 m. The sensible heat and latent heat are negatively correlated with water vapor flux divergence. The southwest boundary of southeastern Tibet is a key area affecting water vapor flux divergence. When the sensible heat and latent heat exhibit downward trends during the non-Asian monsoon season, the eastward water vapor flux exhibits an upward trend. During the Asian monsoon season, when the sensible heat and latent heat in southeastern Tibet increase as a whole, the eastward water vapor flux in the total-column of southeastern Tibet increases.


2019 ◽  
Vol 20 (9) ◽  
pp. 1779-1794 ◽  
Author(s):  
Andrew C. Martin ◽  
F. Martin Ralph ◽  
Anna Wilson ◽  
Laurel DeHaan ◽  
Brian Kawzenuk

Abstract Mesoscale frontal waves have the potential to modify the hydrometeorological impacts of atmospheric rivers (ARs). The small scale and rapid growth of these waves pose significant forecast challenges. We examined a frontal wave that developed a secondary cyclone during the landfall of an extreme AR in Northern California. We document rapid changes in significant storm features including integrated vapor transport and precipitation and connect these to high forecast uncertainty at 1–4-days’ lead time. We also analyze the skill of the Global Ensemble Forecast System in predicting secondary cyclogenesis and relate secondary cyclogenesis prediction skill to forecasts of AR intensity, AR duration, and upslope water vapor flux in the orographic controlling layer. Leveraging a measure of reference accuracy designed for cyclogenesis, we found forecasts were only able to skillfully predict secondary cyclogenesis for lead times less than 36 h. Forecast skill in predicting the large-scale pressure pattern and integrated vapor transport was lost by 96-h lead time. For lead times longer than 36 h, the failure to predict secondary cyclogenesis led to significant uncertainty in forecast AR intensity and to long bias in AR forecast duration. Failure to forecast a warm front associated with the secondary cyclone at lead times less than 36 h caused large overprediction of upslope water vapor flux, an important indicator of orographic precipitation forcing. This study highlights the need to identify offshore mesoscale frontal waves in real time and to characterize the forecast uncertainty inherent in these events when creating hydrometeorological forecasts.


2020 ◽  
Vol 21 (9) ◽  
pp. 2123-2138
Author(s):  
Natalie Teale ◽  
David A. Robinson

AbstractThis study presents a climatology of water vapor fluxes for the eastern United States and adjacent Atlantic with particular focus on the Northeast. Pathways of moisture transport comprising this climatology were discerned using a self-organizing map methodology ingesting daily integrated vapor transport data from ECMWF ERA-Interim Reanalysis from 1979 to 2017 at a 2.5° × 2.5° spatial resolution. Sixteen spatially distinct moisture transport patterns capture the variety of water vapor transport in the region. The climatology of water vapor transport is precisely and comprehensively defined via synthesis of spatial and temporal characteristics of the fluxes. Each flux has a distinct seasonality and frequency. The fluxes containing the highest amounts of moisture transport occur less frequently than those with less moisture transport. Because the patterns showing less moisture transport are prevalent, they are major contributors to the manner in which water vapor is moved through the eastern United States. The spatial confinement of fluxes is inversely related to persistence, with strong, narrow bands of enhanced moisture transport most often moving through the region on daily time scales. Many moisture fluxes meet a threshold-based definition of atmospheric rivers, with the diversity in trajectories and moisture sources indicating that a variety of mechanisms develop these enhanced moisture transport conditions. Temporal variability in the monthly frequencies of several of the fluxes in this study aligns with changes in the regional precipitation regime, demonstrating that this water vapor flux climatology provides a precise moisture-delivery framework from which changes in precipitation can be investigated.


2018 ◽  
Vol 19 (7) ◽  
pp. 1097-1113 ◽  
Author(s):  
Andrew Martin ◽  
F. Martin Ralph ◽  
Reuben Demirdjian ◽  
Laurel DeHaan ◽  
Rachel Weihs ◽  
...  

Abstract Accurate forecasts of precipitation during landfalling atmospheric rivers (ARs) are critical because ARs play a large role in water supply and flooding for many regions. In this study, we have used hundreds of observations to verify global and regional model forecasts of atmospheric rivers making landfall in Northern California and offshore in the midlatitude northeast Pacific Ocean. We have characterized forecast error and the predictability limit in AR water vapor transport, static stability, onshore precipitation, and standard atmospheric fields. Analysis is also presented that apportions the role of orographic forcing and precipitation response in driving errors in forecast precipitation after AR landfall. It is found that the global model and the higher-resolution regional model reach their predictability limit in forecasting the atmospheric state during ARs at similar lead times, and both present similar and important errors in low-level water vapor flux, moist-static stability, and precipitation. However, the relative contribution of forcing and response to the incurred precipitation error is very different in the two models. It can be demonstrated using the analysis presented herein that improving water vapor transport accuracy can significantly reduce regional model precipitation errors during ARs, while the same cannot be demonstrated for the global model.


2016 ◽  
Vol 17 (11) ◽  
pp. 2763-2784 ◽  
Author(s):  
Young-Hee Ryu ◽  
James A. Smith ◽  
Mary Lynn Baeck ◽  
Luciana K. Cunha ◽  
Elie Bou-Zeid ◽  
...  

Abstract The regional water cycle is examined with a special focus on water vapor transport in Iowa during the Iowa Flood Studies (IFloodS) campaign period, April–June 2013. The period had exceptionally large rainfall accumulations, and rainfall was distributed over an unusually large number of storm days. Radar-derived rainfall fields covering the 200 000 km2 study region; precipitable water from a network of global positioning system (GPS) measurements; and vertically integrated water vapor flux derived from GPS precipitable water, radar velocity–azimuth display (VAD) wind profiles, and radiosonde humidity profiles are utilized. They show that heavy rainfall is relatively weakly correlated with precipitable water and precipitable water change, with somewhat stronger direct relationships to water vapor flux. Thermodynamic properties tied to the vertical distribution of water vapor play an important role in determining heavy rainfall distribution, especially for periods of strong southerly water vapor flux. The diurnal variation of the water cycle during the IFloodS field campaign is pronounced, especially for rainfall and water vapor flux. To examine the potential effects of relative humidity in the lower atmosphere on heavy rainfall, numerical simulations are performed. It is found that low-level moisture can greatly affect heavy rainfall amount under favorable large-scale environmental conditions.


2008 ◽  
Vol 9 (1) ◽  
pp. 22-47 ◽  
Author(s):  
Paul J. Neiman ◽  
F. Martin Ralph ◽  
Gary A. Wick ◽  
Jessica D. Lundquist ◽  
Michael D. Dettinger

Abstract The pre-cold-frontal low-level jet within oceanic extratropical cyclones represents the lower-tropospheric component of a deeper corridor of concentrated water vapor transport in the cyclone warm sector. These corridors are referred to as atmospheric rivers (ARs) because they are narrow relative to their length scale and are responsible for most of the poleward water vapor transport at midlatitudes. This paper investigates landfalling ARs along adjacent north- and south-coast regions of western North America. Special Sensor Microwave Imager (SSM/I) satellite observations of long, narrow plumes of enhanced integrated water vapor (IWV) were used to detect ARs just offshore over the eastern Pacific from 1997 to 2005. The north coast experienced 301 AR days, while the south coast had only 115. Most ARs occurred during the warm season in the north and cool season in the south, despite the fact that the cool season is climatologically wettest for both regions. Composite SSM/I IWV analyses showed landfalling wintertime ARs extending northeastward from the tropical eastern Pacific, whereas the summertime composites were zonally oriented and, thus, did not originate from this region of the tropics. Companion SSM/I composites of daily rainfall showed significant orographic enhancement during the landfall of winter (but not summer) ARs. The NCEP–NCAR global reanalysis dataset and regional precipitation networks were used to assess composite synoptic characteristics and overland impacts of landfalling ARs. The ARs possess strong vertically integrated horizontal water vapor fluxes that, on average, impinge on the West Coast in the pre-cold-frontal environment in winter and post-cold-frontal environment in summer. Even though the IWV in the ARs is greater in summer, the vapor flux is stronger in winter due to much stronger flows associated with more intense storms. The landfall of ARs in winter and north-coast summer coincides with anomalous warmth, a trough offshore, and ridging over the Intermountain West, whereas the south-coast summer ARs coincide with relatively cold conditions and a near-coast trough. ARs have a much more profound impact on near-coast precipitation in winter than summer, because the terrain-normal vapor flux is stronger and the air more nearly saturated in winter. During winter, ARs produce roughly twice as much precipitation as all storms. In addition, wintertime ARs with the largest SSM/I IWV are tied to more intense storms with stronger flows and vapor fluxes, and more precipitation. ARs generally increase snow water equivalent (SWE) in autumn/winter and decrease SWE in spring. On average, wintertime SWE exhibits normal gains during north-coast AR storms and above-normal gains during the south-coast AR storms. The north-coast sites are mostly lower in altitude, where warmer-than-normal conditions more frequently yield rain. During those events when heavy rain from a warm AR storm falls on a preexisting snowpack, flooding is more likely to occur.


Sign in / Sign up

Export Citation Format

Share Document