scholarly journals The Impact of Initial Snow Conditions on the Numerical Weather Simulation of a Northern Rockies Atmospheric River

2021 ◽  
Vol 22 (1) ◽  
pp. 155-167
Author(s):  
William Rudisill ◽  
Alejandro Flores ◽  
James McNamara

AbstractSnow’s thermal and radiative properties strongly impact the land surface energy balance and thus the atmosphere above it. Land surface snow information is poorly known in mountainous regions. Few studies have examined the impact of initial land surface snow conditions in high-resolution, convection-permitting numerical weather prediction models during the midlatitude cool season. The extent to which land surface snow influences atmospheric energy transport and subsequent surface meteorological states is tested using a high-resolution (1 km) configuration of the Weather Research and Forecasting (WRF) Model, for both calm conditions and weather characteristic of a warm late March atmospheric river. A set of synthetic but realistic snow states are used as initial conditions for the model runs and the resulting differences are compared. We find that the presence (absence) of snow decreases (increases) 2-m air temperatures by as much as 4 K during both periods, and that the atmosphere responds to snow perturbations through advection of moist static energy from neighboring regions. Snow mass and snow-covered area are both important variables that influence 2-m air temperature. Finally, the meteorological states produced from the WRF experiments are used to force an offline hydrologic model, demonstrating that snowmelt rates can increase/decrease by factor of 2 depending on the initial snow conditions used in the parent weather model. We propose that more realistic representations of land surface snow properties in mesoscale models may be a source of hydrometeorological predictability

2011 ◽  
Vol 26 (6) ◽  
pp. 785-807 ◽  
Author(s):  
Jonathan L. Case ◽  
Sujay V. Kumar ◽  
Jayanthi Srikishen ◽  
Gary J. Jedlovec

Abstract It is hypothesized that high-resolution, accurate representations of surface properties such as soil moisture and sea surface temperature are necessary to improve simulations of summertime pulse-type convective precipitation in high-resolution models. This paper presents model verification results of a case study period from June to August 2008 over the southeastern United States using the Weather Research and Forecasting numerical weather prediction model. Experimental simulations initialized with high-resolution land surface fields from the National Aeronautics and Space Administration’s (NASA) Land Information System (LIS) and sea surface temperatures (SSTs) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) are compared to a set of control simulations initialized with interpolated fields from the National Centers for Environmental Prediction’s (NCEP) 12-km North American Mesoscale model. The LIS land surface and MODIS SSTs provide a more detailed surface initialization at a resolution comparable to the 4-km model grid spacing. Soil moisture from the LIS spinup run is shown to respond better to the extreme rainfall of Tropical Storm Fay in August 2008 over the Florida peninsula. The LIS has slightly lower errors and higher anomaly correlations in the top soil layer but exhibits a stronger dry bias in the root zone. The model sensitivity to the alternative surface initial conditions is examined for a sample case, showing that the LIS–MODIS data substantially impact surface and boundary layer properties. The Developmental Testbed Center’s Meteorological Evaluation Tools package is employed to produce verification statistics, including traditional gridded precipitation verification and output statistics from the Method for Object-Based Diagnostic Evaluation (MODE) tool. The LIS–MODIS initialization is found to produce small improvements in the skill scores of 1-h accumulated precipitation during the forecast hours of the peak diurnal convective cycle. Because there is very little union in time and space between the forecast and observed precipitation systems, results from the MODE object verification are examined to relax the stringency of traditional gridpoint precipitation verification. The MODE results indicate that the LIS–MODIS-initialized model runs increase the 10 mm h−1 matched object areas (“hits”) while simultaneously decreasing the unmatched object areas (“misses” plus “false alarms”) during most of the peak convective forecast hours, with statistically significant improvements of up to 5%. Simulated 1-h precipitation objects in the LIS–MODIS runs more closely resemble the observed objects, particularly at higher accumulation thresholds. Despite the small improvements, however, the overall low verification scores indicate that much uncertainty still exists in simulating the processes responsible for airmass-type convective precipitation systems in convection-allowing models.


2020 ◽  
Vol 35 (2) ◽  
pp. 309-324
Author(s):  
Susan Rennie ◽  
Lawrence Rikus ◽  
Nathan Eizenberg ◽  
Peter Steinle ◽  
Monika Krysta

Abstract The impact of Doppler radar wind observations on forecasts from a developmental, high-resolution numerical weather prediction (NWP) system is assessed. The new 1.5-km limited-area model will be Australia’s first such operational NWP system to include data assimilation. During development, the assimilation of radar wind observations was trialed over a 2-month period to approve the initial inclusion of these observations. Three trials were run: the first with no radar data, the second with radial wind observations from precipitation echoes, and the third with radial winds from both precipitation and insect echoes. The forecasts were verified against surface observations from automatic weather stations, against rainfall accumulations using fractions skill scores, and against satellite cloud observations. These methods encompassed verification across a range of vertical levels. Additionally, a case study was examined more closely. Overall results showed little statistical difference in skill between the trials, and the net impact was neutral. While the new observations clearly affected the forecast, the objective and subjective analyses showed a neutral impact on the forecast overall. As a first step, this result is satisfactory for the operational implementation. In future, upgrades to the radar network will start to reduce the observation error, and further improvements to the data assimilation are planned, which may be expected to improve the impact.


2018 ◽  
Vol 146 (2) ◽  
pp. 599-622 ◽  
Author(s):  
David D. Flagg ◽  
James D. Doyle ◽  
Teddy R. Holt ◽  
Daniel P. Tyndall ◽  
Clark M. Amerault ◽  
...  

Abstract The Trident Warrior observational field campaign conducted off the U.S. mid-Atlantic coast in July 2013 included the deployment of an unmanned aerial system (UAS) with several payloads on board for atmospheric and oceanic observation. These UAS observations, spanning seven flights over 5 days in the lowest 1550 m above mean sea level, were assimilated into a three-dimensional variational data assimilation (DA) system [the Naval Research Laboratory Atmospheric Variational Data Assimilation System (NAVDAS)] used to generate analyses for a numerical weather prediction model [the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS)] with a coupled ocean model [the Naval Research Laboratory Navy Coastal Ocean Model (NCOM)]. The impact of the assimilated UAS observations on short-term atmospheric prediction performance is evaluated and quantified. Observations collected from 50 radiosonde launches during the campaign adjacent to the UAS flight paths serve as model forecast verification. Experiments reveal a substantial reduction of model bias in forecast temperature and moisture profiles consistently throughout the campaign period due to the assimilation of UAS observations. The model error reduction is most substantial in the vicinity of the inversion at the top of the model-estimated boundary layer. Investigations reveal a consistent improvement to prediction of the vertical position, strength, and depth of the boundary layer inversion. The relative impact of UAS observations is explored further with experiments of systematic denial of data streams from the NAVDAS DA system and removal of individual measurement sources on the UAS platform.


2018 ◽  
Vol 146 (11) ◽  
pp. 3845-3872 ◽  
Author(s):  
Nicholas A. Gasperoni ◽  
Xuguang Wang ◽  
Keith A. Brewster ◽  
Frederick H. Carr

Abstract The Nationwide Network of Networks (NNoN) concept was introduced by the National Research Council to address the growing need for a national mesoscale observing system and the continued advancement toward accurate high-resolution numerical weather prediction. The research test bed known as the Dallas–Fort Worth (DFW) Urban Demonstration Network was created to experiment with many kinds of mesoscale observations that could be used in a data assimilation system. Many nonconventional observations, including Earth Networks and Citizen Weather Observer Program surface stations, are combined with conventional operational data to form the test bed network. A principal component of the NNoN effort is the quantification of observation impact from several different sources of information. In this study, the GSI-based EnKF system was used together with the WRF-ARW Model to examine impacts of observations assimilated for forecasting convection initiation (CI) in the 3 April 2014 hail storm case. Data denial experiments tested the impact of high-frequency (5 min) assimilation of nonconventional data on the timing and location of CI and subsequent storm evolution. Results showed nonconventional observations were necessary to capture details in the dryline structure causing localized enhanced convergence and leading to CI. Diagnosis of denial-minus-control fields showed the cumulative influence each observing network had on the resulting CI forecast. It was found that most of this impact came from the assimilation of thermodynamic observations in sensitive areas along the dryline gradient. Accurate metadata were found to be crucial toward the future application of nonconventional observations in high-resolution assimilation and forecast systems.


2017 ◽  
Vol 10 (5) ◽  
pp. 2031-2055 ◽  
Author(s):  
Thomas Schwitalla ◽  
Hans-Stefan Bauer ◽  
Volker Wulfmeyer ◽  
Kirsten Warrach-Sagi

Abstract. Increasing computational resources and the demands of impact modelers, stake holders, and society envision seasonal and climate simulations with the convection-permitting resolution. So far such a resolution is only achieved with a limited-area model whose results are impacted by zonal and meridional boundaries. Here, we present the setup of a latitude-belt domain that reduces disturbances originating from the western and eastern boundaries and therefore allows for studying the impact of model resolution and physical parameterization. The Weather Research and Forecasting (WRF) model coupled to the NOAH land–surface model was operated during July and August 2013 at two different horizontal resolutions, namely 0.03 (HIRES) and 0.12° (LOWRES). Both simulations were forced by the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis data at the northern and southern domain boundaries, and the high-resolution Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) data at the sea surface.The simulations are compared to the operational ECMWF analysis for the representation of large-scale features. To analyze the simulated precipitation, the operational ECMWF forecast, the CPC MORPHing (CMORPH), and the ENSEMBLES gridded observation precipitation data set (E-OBS) were used as references.Analyzing pressure, geopotential height, wind, and temperature fields as well as precipitation revealed (1) a benefit from the higher resolution concerning the reduction of monthly biases, root mean square error, and an improved Pearson skill score, and (2) deficiencies in the physical parameterizations leading to notable biases in distinct regions like the polar Atlantic for the LOWRES simulation, the North Pacific, and Inner Mongolia for both resolutions.In summary, the application of a latitude belt on a convection-permitting resolution shows promising results that are beneficial for future seasonal forecasting.


2011 ◽  
Vol 11 (12) ◽  
pp. 3135-3149 ◽  
Author(s):  
G. Panegrossi ◽  
R. Ferretti ◽  
L. Pulvirenti ◽  
N. Pierdicca

Abstract. The representation of land-atmosphere interactions in weather forecast models has a strong impact on the Planetary Boundary Layer (PBL) and, in turn, on the forecast. Soil moisture is one of the key variables in land surface modelling, and an inadequate initial soil moisture field can introduce major biases in the surface heat and moisture fluxes and have a long-lasting effect on the model behaviour. Detecting the variability of soil characteristics at small scales is particularly important in mesoscale models because of the continued increase of their spatial resolution. In this paper, the high resolution soil moisture field derived from ENVISAT/ASAR observations is used to derive the soil moisture initial condition for the MM5 simulation of the Tanaro flood event of April 2009. The ASAR-derived soil moisture field shows significantly drier conditions compared to the ECMWF analysis. The impact of soil moisture on the forecast has been evaluated in terms of predicted precipitation and rain gauge data available for this event have been used as ground truth. The use of the drier, highly resolved soil moisture content (SMC) shows a significant impact on the precipitation forecast, particularly evident during the early phase of the event. The timing of the onset of the precipitation, as well as the intensity of rainfall and the location of rain/no rain areas, are better predicted. The overall accuracy of the forecast using ASAR SMC data is significantly increased during the first 30 h of simulation. The impact of initial SMC on the precipitation has been related to the change in the water vapour field in the PBL prior to the onset of the precipitation, due to surface evaporation. This study represents a first attempt to establish whether high resolution SAR-based SMC data might be useful for operational use, in anticipation of the launch of the Sentinel-1 satellite.


Sign in / Sign up

Export Citation Format

Share Document