scholarly journals Year-to-Year Variations of the Stable Isotopes in Precipitation in February at Cuiabá, Located on the Northern Fringe of Pantanal, Brazil

2005 ◽  
Vol 6 (3) ◽  
pp. 324-329 ◽  
Author(s):  
Hiroshi Matsuyama ◽  
Kunihide Miyaoka ◽  
Kooiti Masuda

Abstract Large year-to-year variations of δ18O were found in the precipitation recorded in the International Atomic Energy Agency/Global Network of Isotopes in Precipitation (IAEA/GNIP) database for February at Cuiabá, located on the northern fringe of Pantanal, Brazil. Three depleted years (1963, 1978, and 1968) and three enriched years (1966, 1984, and 1983) were chosen to investigate this phenomenon and to correlate the amount of precipitation, the occurrences of storm precipitation, and the vapor flux field. In the depleted years, precipitation exceeding the long-term mean was observed at Cuiabá, while the southward vapor flux from the Amazon basin was less than the long-term mean. Since d-excesses in these years were large in general, fast evaporation must contribute to the greater precipitation observed in these depleted years. In contrast, such common features were not found in the vapor flux field in the enriched years. The occurrences of storm precipitation are important in 1966, while the amount effect is responsible for 1984. In 1983, enriched meteoric water is attributed to both the occurrences of storm precipitation and vapor flux field.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Shakir Hussain ◽  
Song Xianfang ◽  
Iqtidar Hussain ◽  
Liu Jianrong ◽  
Han Dong Mei ◽  
...  

Significant temporal variations inδ18O and deuterium isotopes were found in the rainfall water of Islamabad, Pakistan, over a 15-year period (1992–2006). The data were obtained from the International Atomic Energy Agency/Global Network of Isotopes in Precipitation (IAEA/GNIP) database, and statistical correlations were investigated. In particular, this study provides the first detailed analysis of GNIP data for Islamabad. Both dry (1999-2000) and wet years (1994, 1997, and 2000) were chosen to investigate the correlations between precipitation amount, vapor flux, and temperature. We observed obvious differences between the dry and wet years and among seasons as well. Long-term features in the isotope composition agreed with the global meteorological water line, whereas short-term values followed rainfall amounts; that is, a total of 72% of the precipitation’s isotopic signature was dependent on the rainfall amount, and temperature controlled 73% of the isotopic features during October to May. The lowerd-excess values were attributed to conditions during the spring season and a secondary evaporation boost during dry years; precipitation originating from the Mediterranean Sea showed highd-excess values. Overall, the results of this study contribute to the understanding of precipitation variations and their association with water vapor transport over Islamabad, Pakistan.


Radiocarbon ◽  
1990 ◽  
Vol 32 (3) ◽  
pp. 369-374 ◽  
Author(s):  
Roberto Gonfiantini ◽  
Kazimierz Rozanski ◽  
Willibald Stichler

We briefly present here the environmental isotope intercalibration programs of the International Atomic Energy Agency (IAEA). In fact, the IAEA has implemented two parallel programs during the last 20 years: for stable isotopes of light elements and for a radioactive isotope of hydrogen, tritium. This IAEA activity resulted in the preparation of a number of reference and intercomparison materials of various types, now stored in the Agency and available upon request.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wesley P. Scott ◽  
Sergio Contreras ◽  
Gabriel J. Bowen ◽  
T. Elliott Arnold ◽  
Ramón Bustamante-Ortega ◽  
...  

AbstractWarming across the globe is expected to alter the strength and amount of regional precipitation, but there is uncertainty associated with the magnitude of these expected changes, and also how these changes in temperature and the hydrologic cycle will affect humans. For example, the climate in central-south Chile is projected to become significantly warmer and drier over the next several decades in response to anthropogenically driven warming, but these anthropogenic changes are superimposed on natural climate variability. The stable isotope composition of meteoric water provides significant information regarding the moisture source, pathways, and rain-out history of an air mass, but precipitation samples suitable for stable isotope measurements require long-term placement of field equipment making them difficult to obtain. The International Atomic Energy Agency (IAEA) Global Network of Isotopes in Precipitation (GNIP) stations generate isotopic and ancillary data of precipitation from many locations around the world, but remote areas of developing countries like Chile typically have sparse networks of meteorological stations, which inhibit our ability to accurately model regional precipitation. Central-south Chile, in particular, has a sparse network of GNIP stations and, as a result, the isotopic composition of meteoric water is underrepresented in the global database complicating efforts to constrain modern day hydroclimate variability as well as paleohydrologic reconstruction for southern South America. In this study, we measured the stable isotope compositions of hydrogen (δ2H) and oxygen (δ18O) in surface lacustrine waters of central-south Chile to determine what physical and/or climatic features are the dominant controls on lacustrine δ18O and δ2H composition, assess whether or not the isotopic composition of the lakes record time-averaged isotope composition of meteoric water, and determine whether an isoscape map based on lake surface waters could predict the H and O isotope compositions of precipitation at the few GNIP stations in the region.


Radiocarbon ◽  
2021 ◽  
pp. 1-12
Author(s):  
G Quarta ◽  
M Molnár ◽  
I Hajdas ◽  
L Calcagnile ◽  
I Major ◽  
...  

ABSTRACT The application of accelerator mass spectrometry radiocarbon (AMS 14C) dating in forensics is made possible by the use of the large excursion of the 14C concentration in the post-WWII terrestrial atmosphere due to nuclear testing as a reference curve for data calibration. By this approach high-precision analyses are possible on samples younger than ∼70 years. Nevertheless, the routine, widespread application of the method in the practice of forensics still appears to be limited by different issues due to possible complex interpretation of the results. We present the results of an intercomparison exercise carried out in the framework of an International Atomic Energy Agency (IAEA) CRP-Coordinated Research Project between three AMS laboratories in Italy, Hungary, and Switzerland. Bone and ivory samples were selected with ages spanning from background (>50 ka) to 2018. The results obtained allow us to assess the high degree of reproducibility of the results and the remarkable consistency of the experimental determinations.


Author(s):  
Paolo Cherubini ◽  
Giovanna Battipaglia ◽  
John L. Innes

Abstract Purpose of Review Society is concerned about the long-term condition of the forests. Although a clear definition of forest health is still missing, to evaluate forest health, monitoring efforts in the past 40 years have concentrated on the assessment of tree vitality, trying to estimate tree photosynthesis rates and productivity. Used in monitoring forest decline in Central Europe since the 1980s, crown foliage transparency has been commonly believed to be the best indicator of tree condition in relation to air pollution, although annual variations appear more closely related to water stress. Although crown transparency is not a good indicator of tree photosynthesis rates, defoliation is still one of the most used indicators of tree vitality. Tree rings have been often used as indicators of past productivity. However, long-term tree growth trends are difficult to interpret because of sampling bias, and ring width patterns do not provide any information about tree physiological processes. Recent Findings In the past two decades, tree-ring stable isotopes have been used not only to reconstruct the impact of past climatic events, such as drought, but also in the study of forest decline induced by air pollution episodes, and other natural disturbances and environmental stress, such as pest outbreaks and wildfires. They have proven to be useful tools for understanding physiological processes and tree response to such stress factors. Summary Tree-ring stable isotopes integrate crown transpiration rates and photosynthesis rates and may enhance our understanding of tree vitality. They are promising indicators of tree vitality. We call for the use of tree-ring stable isotopes in future monitoring programmes.


Author(s):  
Masashi Nakayama ◽  
Haruo Sato ◽  
Yutaka Sugita ◽  
Seiji Ito ◽  
Masashi Minamide ◽  
...  

In Japan, any high level radioactive waste (HLW) repository is to be constructed at over 300 m depth below surface. Tunnel support is used for safety during the construction and operation, and shotcrete and concrete lining are used as the tunnel support. Concrete is a composite material comprised of aggregate, cement and various admixtures. Low alkaline cement has been developed for the long term stability of the barrier systems whose performance could be negatively affected by highly alkaline conditions arising due to cement used in a repository. Japan Atomic Energy Agency (JAEA) has developed a low alkaline cement, named as HFSC (Highly Fly-ash Contained Silicafume Cement), containing over 60 wt% of silica-fume (SF) and fly-ash (FA). HFSC was used experimentally as the shotcrete material in construction of part of the 140m deep gallery in the Horonobe Underground Research Laboratory (URL). The objective of this experiment was to assess the performance of HFSC shotcrete in terms of mechanics, workability, durability, and so on. HFSC used in this experiment is composed of 40 wt% OPC (Ordinary Portland Cement), 20 wt% SF, and 40 wt% FA. This composition was determined based on mechanical testing of various mixes of the above components. Because of the low OPC content, the strength of HFSC tends to be lower than that of OPC. The total length of tunnel using HFSC shotcrete is about 73 m and about 500 m3 of HFSC was used. The workability of HFSC shotcrete was confirmed in this experimental construction.


Sign in / Sign up

Export Citation Format

Share Document