scholarly journals Reconstructability of Three-Dimensional Upper-Ocean Circulation from SWOT Sea Surface Height Measurements

2016 ◽  
Vol 46 (3) ◽  
pp. 947-963 ◽  
Author(s):  
Bo Qiu ◽  
Shuiming Chen ◽  
Patrice Klein ◽  
Clement Ubelmann ◽  
Lee-Lueng Fu ◽  
...  

AbstractUtilizing the framework of effective surface quasigeostrophic (eSQG) theory, this study explores the potential of reconstructing the 3D upper-ocean circulation structures, including the balanced vertical velocity w field, from high-resolution sea surface height (SSH) data of the planned Surface Water and Ocean Topography (SWOT) satellite mission. Specifically, the authors utilize the 1/30°, submesoscale-resolving, OFES model output and subject it to the SWOT simulator that generates the along-swath SSH data with expected measurement errors. Focusing on the Kuroshio Extension region in the North Pacific where regional Rossby numbers range from 0.22 to 0.32, this study finds that the eSQG dynamics constitute an effective framework for reconstructing the 3D upper-ocean circulation field. Using the modeled SSH data as input, the eSQG-reconstructed relative vorticity ζ and w fields are found to reach a correlation of 0.7–0.9 and 0.6–0.7, respectively, in the 1000-m upper ocean when compared to the original model output. Degradation due to the SWOT sampling and measurement errors in the input SSH data for the ζ and w reconstructions is found to be moderate, 5%–25% for the 3D ζ field and 15%–35% for the 3D w field. There exists a tendency for this degradation ratio to decrease in regions where the regional eddy variability (or Rossby number) increases.

2020 ◽  
Vol 50 (1) ◽  
pp. 55-79 ◽  
Author(s):  
Bo Qiu ◽  
Shuiming Chen ◽  
Patrice Klein ◽  
Hector Torres ◽  
Jinbo Wang ◽  
...  

AbstractReconstructability of upper-ocean vertical velocity w and vorticity ζ fields from high-resolution sea surface height (SSH) data is explored using the global 1/48° horizontal-resolution MITgcm output in the context of the forthcoming Surface Water and Ocean Topography (SWOT) mission. By decomposing w with an omega equation of the primitive equation system and by taking into account the measurement design of the SWOT mission, this study seeks to reconstruct the subinertial, balanced w and ζ signals. By adopting the effective surface quasigeostrophic (eSQG) framework and applying to the Kuroshio Extension region of the North Pacific, we find that the target and reconstructed fields have a spatial correlation of ~0.7 below the mixed layer for w and 0.7–0.9 throughout the 1000-m upper ocean for ζ in the error-free scenario. By taking the SWOT sampling and measurement errors into account, the spatial correlation is found to decrease to 0.4–0.6 below the mixed layer for w and 0.6–0.7 for ζ, respectively. For both w and ζ reconstruction, the degradation due to the SWOT errors is more significant in the surface layer and for smaller-scale signals. The impact of errors lessens with the increasing depth and lengthening horizontal scales.


2007 ◽  
Vol 37 (8) ◽  
pp. 1997-2008 ◽  
Author(s):  
Gaël Forget ◽  
Carl Wunsch

Abstract An estimate is made of the three-dimensional global oceanic temperature and salinity variability, omitting the seasonal cycle, both as a major descriptive element of the ocean circulation and for use in the error estimates of state estimation. Historical hydrography, recent data from the World Ocean Circulation Experiment, and Argo profile data are all used. Root-mean-square vertical displacements in the upper 300 m of the ocean are generally smaller than 50 m, except in energetic boundary currents and in the North Atlantic subpolar gyre. Variability in temperature and salinity is strongly correlated below the top 100 m. Salinity contributions to sea surface height variability appear more significant at low latitudes than expected, possibly resulting from advective and diffusive processes. Results are generally consistent with altimetric variability under two simple kinematic hypotheses, and much of the observed structure coincides with known dynamical features. A large fraction of the sea surface height variability is consistent with the hypothesis of dominance of the first baroclinic mode.


Eos ◽  
2016 ◽  
Author(s):  
Sarah Stanley

The seasonality of fine-scale, near-surface ocean dynamics raises important considerations for an upcoming satellite mission to measure global sea surface height.


2021 ◽  
Vol 51 (5) ◽  
pp. 1353-1373
Author(s):  
Lei Liu ◽  
Huijie Xue ◽  
Hideharu Sasaki

AbstractUsing the extended “interior + surface quasigeostrophic” method from the 2019 study by Liu et al. (hereafter L19), subsurface density and horizontal velocities can be reconstructed from sea surface buoyancy and surface height. This study explores the potential of L19 for diagnosing the upper-ocean vertical velocity w field from high-resolution surface information, employing the 1/30° horizontal resolution OFES model output. Specifically, we employ the L19-reconstructed density and horizontal velocity fields in a diabatic version of the omega equation that incorporates a simplified parameterization for turbulent vertical mixing. The w diagnosis is evaluated against OFES output in the Kuroshio Extension region of the North Pacific, and the result indicates that the L19 method constitutes an effective framework. Statistically, the OFES-simulated and L19-diagnosed w fields have a 2-yr-averaged spatial correlation of 0.42–0.51 within the mixed layer and 0.51–0.67 throughout the 1000-m upper ocean below the mixed layer. Including the diabatic turbulent mixing effect has improved the w diagnoses inside the mixed layer, particularly for the cold-season days with the largest correlation improvement reaching 0.31. Our encouraging results suggest that the L19 method can be applied to the high-resolution sea surface height data from the forthcoming Surface Water and Ocean Topography (SWOT) satellite mission for reconstructing 3D hydrodynamic conditions of the upper ocean.


Ocean Science ◽  
2012 ◽  
Vol 8 (6) ◽  
pp. 931-943 ◽  
Author(s):  
I. Bashmachnikov ◽  
X. Carton

Abstract. Meddies, intra-thermocline eddies of Mediterranean water, can often be detected at the sea surface as positive sea-level anomalies. Here we study the surface signature of several meddies tracked with RAFOS floats and AVISO altimetry. While pushing its way through the water column, a meddy raises isopycnals above. As a consequence of potential vorticity conservation, negative relative vorticity is generated in the upper layer. During the initial period of meddy acceleration after meddy formation or after a stagnation stage, a cyclonic signal is also generated at the sea-surface, but mostly the anticyclonic surface signal follows the meddy. Based on geostrophy and potential vorticity balance, we present theoretical estimates of the intensity of the surface signature. It appears to be proportional to the meddy core radius and to the Coriolis parameter, and inversely proportional to the core depth and buoyancy frequency. This indicates that surface signature of a meddy may be strongly reduced by the upper ocean stratification. Using climatic distribution of the stratification intensity, we claim that the southernmost limit for detection in altimetry of small meddies (with radii on the order of 10–15 km) should lie in the subtropics (35–45° N), while large meddies (with radii of 25–30 km) could be detected as far south as the northern tropics (25–35° N). Those results agree with observations.


1996 ◽  
Vol 14 (9) ◽  
pp. 986-1015 ◽  
Author(s):  
L. Eymard ◽  
S. Planton ◽  
P. Durand ◽  
C. Le Visage ◽  
P. Y. Le Traon ◽  
...  

Abstract. The SEMAPHORE (Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale) experiment has been conducted from June to November 1993 in the Northeast Atlantic between the Azores and Madeira. It was centered on the study of the mesoscale ocean circulation and air-sea interactions. The experimental investigation was achieved at the mesoscale using moorings, floats, and ship hydrological survey, and at a smaller scale by one dedicated ship, two instrumented aircraft, and surface drifting buoys, for one and a half month in October-November (IOP: intense observing period). Observations from meteorological operational satellites as well as spaceborne microwave sensors were used in complement. The main studies undertaken concern the mesoscale ocean, the upper ocean, the atmospheric boundary layer, and the sea surface, and first results are presented for the various topics. From data analysis and model simulations, the main characteristics of the ocean circulation were deduced, showing the close relationship between the Azores front meander and the occurrence of Mediterranean water lenses (meddies), and the shift between the Azores current frontal signature at the surface and within the thermocline. Using drifting buoys and ship data in the upper ocean, the gap between the scales of the atmospheric forcing and the oceanic variability was made evident. A 2 °C decrease and a 40-m deepening of the mixed layer were measured within the IOP, associated with a heating loss of about 100 W m-2. This evolution was shown to be strongly connected to the occurrence of storms at the beginning and the end of October. Above the surface, turbulent measurements from ship and aircraft were analyzed across the surface thermal front, showing a 30% difference in heat fluxes between both sides during a 4-day period, and the respective contributions of the wind and the surface temperature were evaluated. The classical momentum flux bulk parameterization was found to fail in low wind and unstable conditions. Finally, the sea surface was investigated using airborne and satellite radars and wave buoys. A wave model, operationally used, was found to get better results compared with radar and wave-buoy measurements, when initialized using an improved wind field, obtained by assimilating satellite and buoy wind data in a meteorological model. A detailed analysis of a 2-day period showed that the swell component, propagating from a far source area, is underestimated in the wave model. A data base has been created, containing all experimental measurements. It will allow us to pursue the interpretation of observations and to test model simulations in the ocean, at the surface and in the atmospheric boundary layer, and to investigate the ocean-atmosphere coupling at the local and mesoscales.


2012 ◽  
Vol 9 (5) ◽  
pp. 2885-2914 ◽  
Author(s):  
A. Soloviev ◽  
C. Maingot ◽  
S. Matt ◽  
R. E. Dodge ◽  
S. Lehner ◽  
...  

Abstract. This work is aimed at identifying the origin of fine-scale features on the sea surface in synthetic aperture radar (SAR) imagery with the help of in-situ measurements as well as numerical models (presented in a companion paper). We are interested in natural and artificial features starting from the horizontal scale of the upper ocean mixed layer, around 30–50 m. These features are often associated with three-dimensional upper ocean dynamics. We have conducted a number of studies involving in-situ observations in the Straits of Florida during SAR satellite overpass. The data include examples of sharp frontal interfaces, wakes of surface ships, internal wave signatures, as well as slicks of artificial and natural origin. Atmospheric processes, such as squall lines and rain cells, produced prominent signatures on the sea surface. This data has allowed us to test an approach for distinguishing between natural and artificial features and atmospheric influences in SAR images that is based on a co-polarized phase difference filter.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Lianxin Zhang ◽  
Changlong Guan ◽  
Chunjian Sun ◽  
Siyu Gao ◽  
Shaomei Yu

A one-dimensional turbulent model is used to investigate the effect of sea spray mediated turbulent fluxes on upper ocean temperature during the passage of typhoon Yagi over the Kuroshio Extension area in 2006. Both a macroscopical sea spray momentum flux algorithm and a microphysical heat and moisture flux algorithm are included in this turbulent model. Numerical results show that the model can well reproduce the upper ocean temperature, which is consistent with the data from the Kuroshio Extension Observatory. Besides, the sea surface temperature is decreased by about 0.5°C during the typhoon passage, which also agrees with the sea surface temperature dataset derived from Advanced Microwave Scanning Radiometer for the Earth Observing and Reynolds. Diagnostic analysis indicates that sea spray acts as an additional source of the air-sea turbulent fluxes and plays a key role in increasing the turbulent kinetic energy in the upper ocean, which enhances the temperature diffusion there. Therefore, sea spray is also an important factor in determining the upper mixed layer depth during the typhoon passage.


2015 ◽  
Vol 45 (6) ◽  
pp. 1667-1689 ◽  
Author(s):  
Benjamin Jaimes ◽  
Lynn K. Shay

AbstractTropical cyclones (TCs) typically produce intense oceanic upwelling underneath the storm’s center and weaker and broader downwelling outside upwelled regions. However, several cases of predominantly downwelling responses over warm, anticyclonic mesoscale oceanic features were recently reported, where the ensuing upper-ocean warming prevented significant cooling of the sea surface, and TCs rapidly attained and maintained major status. Elucidating downwelling responses is critical to better understanding TC intensification over warm mesoscale oceanic features. Airborne ocean profilers deployed over the Gulf of Mexico’s eddy features during the intensification of tropical storm Isaac into a hurricane measured isothermal downwelling of up to 60 m over a 12-h interval (5 m h−1) or twice the upwelling strength underneath the storm’s center. This displacement occurred over a warm-core eddy that extended underneath Isaac’s left side, where the ensuing upper-ocean warming was ~8 kW m−2; sea surface temperatures >28°C prevailed during Isaac’s intensification. Rather than with just Ekman pumping WE, these observed upwelling–downwelling responses were consistent with a vertical velocity Ws = WE − Rogδ(Uh + UOML); Ws is the TC-driven pumping velocity, derived from the dominant vorticity balance that considers geostrophic flow strength (measured by the eddy Rossby number Rog = ζg/f), geostrophic vorticity ζg, Coriolis frequency f, aspect ratio δ = h/Rmax, oceanic mixed layer thickness h, storm’s radius of maximum winds Rmax, total surface stresses from storm motion Uh, and oceanic mixed layer Ekman drift UOML. These results underscore the need for initializing coupled numerical models with realistic ocean states to correctly resolve the three-dimensional upwelling–downwelling responses and improve TC intensity forecasting.


Sign in / Sign up

Export Citation Format

Share Document