Estimated Global Hydrographic Variability

2007 ◽  
Vol 37 (8) ◽  
pp. 1997-2008 ◽  
Author(s):  
Gaël Forget ◽  
Carl Wunsch

Abstract An estimate is made of the three-dimensional global oceanic temperature and salinity variability, omitting the seasonal cycle, both as a major descriptive element of the ocean circulation and for use in the error estimates of state estimation. Historical hydrography, recent data from the World Ocean Circulation Experiment, and Argo profile data are all used. Root-mean-square vertical displacements in the upper 300 m of the ocean are generally smaller than 50 m, except in energetic boundary currents and in the North Atlantic subpolar gyre. Variability in temperature and salinity is strongly correlated below the top 100 m. Salinity contributions to sea surface height variability appear more significant at low latitudes than expected, possibly resulting from advective and diffusive processes. Results are generally consistent with altimetric variability under two simple kinematic hypotheses, and much of the observed structure coincides with known dynamical features. A large fraction of the sea surface height variability is consistent with the hypothesis of dominance of the first baroclinic mode.

2013 ◽  
Vol 43 (8) ◽  
pp. 1611-1626 ◽  
Author(s):  
Jinbo Wang ◽  
Glenn R. Flierl ◽  
Joseph H. LaCasce ◽  
Julie L. McClean ◽  
Amala Mahadevan

Abstract A new method is proposed for extrapolating subsurface velocity and density fields from sea surface density and sea surface height (SSH). In this, the surface density is linked to the subsurface fields via the surface quasigeostrophic (SQG) formalism, as proposed in several recent papers. The subsurface field is augmented by the addition of the barotropic and first baroclinic modes, whose amplitudes are determined by matching to the sea surface height (pressure), after subtracting the SQG contribution. An additional constraint is that the bottom pressure anomaly vanishes. The method is tested for three regions in the North Atlantic using data from a high-resolution numerical simulation. The decomposition yields strikingly realistic subsurface fields. It is particularly successful in energetic regions like the Gulf Stream extension and at high latitudes where the mixed layer is deep, but it also works in less energetic eastern subtropics. The demonstration highlights the possibility of reconstructing three-dimensional oceanic flows using a combination of satellite fields, for example, sea surface temperature (SST) and SSH, and sparse (or climatological) estimates of the regional depth-resolved density. The method could be further elaborated to integrate additional subsurface information, such as mooring measurements.


2007 ◽  
Vol 37 (2) ◽  
pp. 162-173 ◽  
Author(s):  
D. Roemmich ◽  
J. Gilson ◽  
R. Davis ◽  
P. Sutton ◽  
S. Wijffels ◽  
...  

Abstract An increase in the circulation of the South Pacific Ocean subtropical gyre, extending from the sea surface to middepth, is observed over 12 years. Datasets used to quantify the decadal gyre spinup include satellite altimetric height, the World Ocean Circulation Experiment (WOCE) hydrographic and float survey of the South Pacific, a repeated hydrographic transect along 170°W, and profiling float data from the global Argo array. The signal in sea surface height is a 12-cm increase between 1993 and 2004, on large spatial scale centered at about 40°S, 170°W. The subsurface datasets show that this signal is predominantly due to density variations in the water column, that is, to deepening of isopycnal surfaces, extending to depths of at least 1800 m. The maximum increase in dynamic height is collocated with the deep center of the subtropical gyre, and the signal represents an increase in the total counterclockwise geostrophic circulation of the gyre, by at least 20% at 1000 m. A comparison of WOCE and Argo float trajectories at 1000 m confirms the gyre spinup during the 1990s. The signals in sea surface height, dynamic height, and velocity all peaked around 2003 and subsequently began to decline. The 1990s increase in wind-driven circulation resulted from decadal intensification of wind stress curl east of New Zealand—variability associated with an increase in the atmosphere’s Southern Hemisphere annular mode. It is suggested (based on altimetric height) that midlatitude gyres in all of the oceans have been affected by variability in the atmospheric annular modes on decadal time scales.


2007 ◽  
Vol 37 (2) ◽  
pp. 313-337 ◽  
Author(s):  
A. Köhl ◽  
D. Stammer ◽  
B. Cornuelle

Abstract An estimate of the time-varying global ocean circulation for the period 1992–2002 was obtained by combining most of the World Ocean Circulation Experiment (WOCE) ocean datasets with a general circulation model on a 1° horizontal grid. The estimate exactly satisfies the model equations without artificial sources or sinks of momentum, heat, and freshwater. To bring the model into agreement with observations, its initial temperature and salinity conditions were permitted to change, as were the time-dependent surface fluxes of momentum, heat, and freshwater. The estimation of these “control variables” is largely consistent with accepted uncertainties in the hydrographic climatology and meteorological analyses. The estimated time-mean horizontal transports of volume, heat, and freshwater, which were largely underestimated in the previous 2° optimization performed by Stammer et al., have converged with time-independent estimates from box inversions over most parts of the World Ocean. Trends in the model’s heat content are 7% larger than those reported by Levitus and correspond to a global net heat uptake of about 1.1 W m−2 over the model domain. The associated model trend in sea surface height over the estimation period resembles the observations from Ocean Topography Experiment (TOPEX)/Poseidon over most of the global ocean. Sea surface height changes in the model are primarily steric but show contributions from mass redistributions from the subpolar North Atlantic Ocean and the Southern Ocean to the subtropical Pacific Ocean gyres. Steric contributions are primarily temperature based but are partly compensated by salt variation. However, the North Atlantic and the Southern Ocean reveal a clear contribution of salt to large-scale sea level variations.


2016 ◽  
Vol 46 (3) ◽  
pp. 947-963 ◽  
Author(s):  
Bo Qiu ◽  
Shuiming Chen ◽  
Patrice Klein ◽  
Clement Ubelmann ◽  
Lee-Lueng Fu ◽  
...  

AbstractUtilizing the framework of effective surface quasigeostrophic (eSQG) theory, this study explores the potential of reconstructing the 3D upper-ocean circulation structures, including the balanced vertical velocity w field, from high-resolution sea surface height (SSH) data of the planned Surface Water and Ocean Topography (SWOT) satellite mission. Specifically, the authors utilize the 1/30°, submesoscale-resolving, OFES model output and subject it to the SWOT simulator that generates the along-swath SSH data with expected measurement errors. Focusing on the Kuroshio Extension region in the North Pacific where regional Rossby numbers range from 0.22 to 0.32, this study finds that the eSQG dynamics constitute an effective framework for reconstructing the 3D upper-ocean circulation field. Using the modeled SSH data as input, the eSQG-reconstructed relative vorticity ζ and w fields are found to reach a correlation of 0.7–0.9 and 0.6–0.7, respectively, in the 1000-m upper ocean when compared to the original model output. Degradation due to the SWOT sampling and measurement errors in the input SSH data for the ζ and w reconstructions is found to be moderate, 5%–25% for the 3D ζ field and 15%–35% for the 3D w field. There exists a tendency for this degradation ratio to decrease in regions where the regional eddy variability (or Rossby number) increases.


2018 ◽  
Vol 10 (7) ◽  
pp. 1100 ◽  
Author(s):  
Ferdinando Reale ◽  
Fabio Dentale ◽  
Eugenio Carratelli ◽  
Luciana Fenoglio-Marc

2015 ◽  
Vol 45 (4) ◽  
pp. 943-965 ◽  
Author(s):  
Peter Sutherland ◽  
W. Kendall Melville

AbstractWave breaking removes energy from the surface wave field and injects it into the upper ocean, where it is dissipated by viscosity. This paper presents an investigation of turbulent kinetic energy (TKE) dissipation beneath breaking waves. Wind, wave, and turbulence data were collected in the North Pacific Ocean aboard R/P FLIP, during the ONR-sponsored High Resolution Air-Sea Interaction (HiRes) and Radiance in a Dynamic Ocean (RaDyO) experiments. A new method for measuring TKE dissipation at the sea surface was combined with subsurface measurements to allow estimation of TKE dissipation over the entire wave-affected surface layer. Near the surface, dissipation decayed with depth as z−1, and below approximately one significant wave height, it decayed more quickly, approaching z−2. High levels of TKE dissipation very near the sea surface were consistent with the large fraction of wave energy dissipation attributed to non-air-entraining microbreakers. Comparison of measured profiles with large-eddy simulation results in the literature suggests that dissipation is concentrated closer to the surface than previously expected, largely because the simulations did not resolve microbreaking. Total integrated dissipation in the water column agreed well with dissipation by breaking for young waves, (where cm is the mean wave frequency and is the atmospheric friction velocity), implying that breaking was the dominant source of turbulence in those conditions. The results of these extensive measurements of near-surface dissipation over three field experiments are discussed in the context of observations and ocean boundary layer modeling efforts by other groups.


2020 ◽  
Vol 6 (9) ◽  
pp. eaay2915 ◽  
Author(s):  
Summer K. Praetorius ◽  
Alan Condron ◽  
Alan C. Mix ◽  
Maureen H. Walczak ◽  
Jennifer L. McKay ◽  
...  

Columbia River megafloods occurred repeatedly during the last deglaciation, but the impacts of this fresh water on Pacific hydrography are largely unknown. To reconstruct changes in ocean circulation during this period, we used a numerical model to simulate the flow trajectory of Columbia River megafloods and compiled records of sea surface temperature, paleo-salinity, and deep-water radiocarbon from marine sediment cores in the Northeast Pacific. The North Pacific sea surface cooled and freshened during the early deglacial (19.0-16.5 ka) and Younger Dryas (12.9-11.7 ka) intervals, coincident with the appearance of subsurface water masses depleted in radiocarbon relative to the sea surface. We infer that Pacific meltwater fluxes contributed to net Northern Hemisphere cooling prior to North Atlantic Heinrich Events, and again during the Younger Dryas stadial. Abrupt warming in the Northeast Pacific similarly contributed to hemispheric warming during the Bølling and Holocene transitions. These findings underscore the importance of changes in North Pacific freshwater fluxes and circulation in deglacial climate events.


2020 ◽  
Vol 59 (5) ◽  
pp. 793-817 ◽  
Author(s):  
Alexander Gavrikov ◽  
Sergey K. Gulev ◽  
Margarita Markina ◽  
Natalia Tilinina ◽  
Polina Verezemskaya ◽  
...  

AbstractWe present in this paper the results of the Russian Academy of Sciences North Atlantic Atmospheric Downscaling (RAS-NAAD) project, which provides a 40-yr 3D hindcast of the North Atlantic (10°–80°N) atmosphere at 14-km spatial resolution with 50 levels in the vertical direction (up to 50 hPa), performed with a regional setting of the WRF-ARW 3.8.1 model for the period 1979–2018 and forced by ERA-Interim as a lateral boundary condition. The dataset provides a variety of surface and free-atmosphere parameters at sigma model levels and meets many demands of meteorologists, climate scientists, and oceanographers working in both research and operational domains. Three-dimensional model output at 3-hourly time resolution is freely available to the users. Our evaluation demonstrates a realistic representation of most characteristics in both datasets and also identifies biases mostly in the ice-covered regions. High-resolution and nonhydrostatic model settings in NAAD resolve mesoscale dynamics first of all in the subpolar latitudes. NAAD also provides a new view of the North Atlantic extratropical cyclone activity with a much larger number of cyclones as compared with most reanalyses. It also effectively captures highly localized mechanisms of atmospheric moisture transports. Applications of NAAD to ocean circulation and wave modeling are demonstrated.


Sign in / Sign up

Export Citation Format

Share Document