scholarly journals Jet–Topography Interactions Affect Energy Pathways to the Deep Southern Ocean

2017 ◽  
Vol 47 (7) ◽  
pp. 1799-1816 ◽  
Author(s):  
Alice Barthel ◽  
Andrew McC. Hogg ◽  
Stephanie Waterman ◽  
Shane Keating

AbstractIn the Southern Ocean, strong eastward ocean jets interact with large topographic features, generating eddies that feed back onto the mean flow. Deep-reaching eddies interact with topography, where turbulent dissipation and generation of internal lee waves play an important role in the ocean’s energy budget. However, eddy effects in the deep ocean are difficult to observe and poorly characterized. This study investigates the energy contained in eddies at depth, when an ocean jet encounters topography. This study uses a two-layer ocean model in which an imposed unstable jet encounters a topographic obstacle (either a seamount or a meridional ridge) in a configuration relevant to an Antarctic Circumpolar Current frontal jet. The authors find that the presence of topography increases the eddy kinetic energy (EKE) at depth but that the dominant processes generating this deep EKE depend on the shape and height of the obstacle as well as on the baroclinicity of the jet before it encounters topography. In cases with high topography, horizontal shear instability is the dominant source of deep EKE, while a flat bottom or a strongly sheared inflow leads to deep EKE being generated primarily through baroclinic instability. These results suggest that the deep EKE is set by an interplay between the inflowing jet properties and topography and imply that the response of deep EKE to changes in the Southern Ocean circulation is likely to vary across locations depending on the topography characteristics.

1997 ◽  
Vol 25 ◽  
pp. 111-115 ◽  
Author(s):  
Achim Stössel

This paper investigates the long-term impact of sea ice on global climate using a global sea-ice–ocean general circulation model (OGCM). The sea-ice component involves state-of-the-art dynamics; the ocean component consists of a 3.5° × 3.5° × 11 layer primitive-equation model. Depending on the physical description of sea ice, significant changes are detected in the convective activity, in the hydrographic properties and in the thermohaline circulation of the ocean model. Most of these changes originate in the Southern Ocean, emphasizing the crucial role of sea ice in this marginally stably stratified region of the world's oceans. Specifically, if the effect of brine release is neglected, the deep layers of the Southern Ocean warm up considerably; this is associated with a weakening of the Southern Hemisphere overturning cell. The removal of the commonly used “salinity enhancement” leads to a similar effect. The deep-ocean salinity is almost unaffected in both experiments. Introducing explicit new-ice thickness growth in partially ice-covered gridcells leads to a substantial increase in convective activity, especially in the Southern Ocean, with a concomitant significant cooling and salinification of the deep ocean. Possible mechanisms for the resulting interactions between sea-ice processes and deep-ocean characteristics are suggested.


2010 ◽  
Vol 40 (2) ◽  
pp. 257-278 ◽  
Author(s):  
Andrew F. Thompson

Abstract Satellite altimetry and high-resolution ocean models indicate that the Southern Ocean comprises an intricate web of narrow, meandering jets that undergo spontaneous formation, merger, and splitting events, as well as rapid latitude shifts over periods of weeks to months. The role of topography in controlling jet variability is explored using over 100 simulations from a doubly periodic, forced-dissipative, two-layer quasigeostrophic model. The system is forced by a baroclinically unstable, vertically sheared mean flow in a domain that is large enough to accommodate multiple jets. The dependence of (i) meridional jet spacing, (ii) jet variability, and (iii) domain-averaged meridional transport on changes in the length scale and steepness of simple sinusoidal topographical features is analyzed. The Rhines scale, ℓβ = 2πVe/β, where Ve is an eddy velocity scale and β is the barotropic potential vorticity gradient, measures the meridional extent of eddy mixing by a single jet. The ratio ℓβ /ℓT, where ℓT is the topographic length scale, governs jet behavior. Multiple, steady jets with fixed meridional spacing are observed when ℓβ ≫ ℓT or when ℓβ ≈ ℓT. When ℓβ < ℓT, a pattern of perpetual jet formation and jet merger dominates the time evolution of the system. Zonal ridges systematically reduce the domain-averaged meridional transport, while two-dimensional, sinusoidal bumps can increase transport by an order of magnitude or more. For certain parameters, bumpy topography gives rise to periodic oscillations in the jet structure between purely zonal and topographically steered states. In these cases, transport is dominated by bursts of mixing associated with the transition between the two regimes. Topography modifies local potential vorticity (PV) gradients and mean flows; this can generate asymmetric Reynolds stresses about the jet core and can feed back on the conversion of potential energy to kinetic energy through baroclinic instability. Both processes contribute to unsteady jet behavior. It is likely that these processes play a role in the dynamic nature of Southern Ocean jets.


2014 ◽  
Vol 44 (2) ◽  
pp. 714-732 ◽  
Author(s):  
F. J. Poulin ◽  
A. Stegner ◽  
M. Hernández-Arencibia ◽  
A. Marrero-Díaz ◽  
P. Sangrà

Abstract In situ measurements obtained during the 2010 COUPLING cruise were analyzed in order to fully characterize the velocity structure of the coastal Bransfield Current. An idealized two-layer shallow-water model was used to investigate the various instability processes of the realistic current along the coastal shelf. Particularly studied is how the topographic parameter To (ratio between the shelf slope and the isopycnal slope of the surface current) impacts the growth and the wavelength of the unstable perturbations. For small bottom slopes, when the evolution of the coastal current is controlled by the baroclinic instability, the increase of the topographic parameter To yields a selection of smaller unstable wavelengths. The growth rates increase with small values of To. For larger values of To (To ≳ 10, which is relevant for the coastal Bransfield Current), the baroclinic instability is strongly dampened and the horizontal shear instability becomes the dominant one. In this steep shelf regime, the unstable growth rate and the wavelength selection of the baroclinic coastal current remains almost constant and weakly affected by the amplitude of the bottom velocity or the exact value of the shelf slope. Hence, the linear stability analysis of an idealized Bransfield Current predicts a typical growth time of 7.7 days and an alongshore scale of 47 km all along the South Shetland Island shelf. The fact that these large growth times are identical to the typical transit time of water parcels along the shelf may explain why the current does not exhibit any unstable meanders.


2011 ◽  
Vol 7 (3) ◽  
pp. 771-800 ◽  
Author(s):  
T. Tschumi ◽  
F. Joos ◽  
M. Gehlen ◽  
C. Heinze

Abstract. The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global 3-D ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of ~35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric δ13CCO2, and the reconstructed changes in the Pacific CaCO3 saturation horizon.


The Holocene ◽  
2011 ◽  
Vol 21 (5) ◽  
pp. 793-801 ◽  
Author(s):  
J.E. Kutzbach ◽  
S.J. Vavrus ◽  
W.F. Ruddiman ◽  
G. Philippon-Berthier

We compare climate simulations for Present-Day (PD), Pre-Industrial (PI) time, and a hypothetical (inferred) state termed No-Anthropogenic (NA) based upon the low greenhouse gas (GHG) levels of the late stages of previous interglacials that are comparable in time (orbital configuration) to the present interglacial. We use a fully coupled dynamical atmosphere–ocean model, the CCSM3. We find a consistent trend toward colder climate (lower surface temperature, more snow and sea-ice cover, lower ocean temperature, and modified ocean circulation) as the net change in GHG radiative forcing trends more negative from PD to PI to NA. The climatic response of these variables becomes larger relative to the changed GHG forcing for each step toward a colder climate state (PD to PI to NA). This amplification is significantly enhanced using the dynamical atmosphere–ocean model compared with our previous results with an atmosphere–slab ocean model, a result that conforms to earlier idealized GHG forcing experiments. However, in our case this amplification is not an idealized result, but instead helps frame important questions concerning aspects of Holocene climate change. This enhanced amplification effect leads to an increase in our estimate of the climate’s response to inferred early anthropogenic CO2 increases (NA to PI) relative to the response to industrial-era CO2 increases (PI to PD). Although observations of the climate for the hypothetical NA (inferred from observations of previous interglacials) and for PI have significant uncertainties, our new results using CCSM3 are in better agreement with these observations than our previous results from an atmospheric model coupled to a static slab ocean. The results support more strongly inferences by Ruddiman concerning indirect effects of ocean solubility/sea-ice/deep ocean ventilation feedbacks that may have contributed to a further increase in late-Holocene atmospheric CO2 beyond that caused by early anthropogenic emissions alone.


Author(s):  
Andrew McC. Hogg ◽  
David R. Munday

The response of the major ocean currents to changes in wind stress forcing is investigated with a series of idealized, but eddy-permitting, model simulations. Previously, ostensibly similar models have shown considerable variation in the oceanic response to changing wind stress forcing. Here, it is shown that a major reason for these differences in model sensitivity is subtle modification of the idealized bathymetry. The key bathymetric parameter is the extent to which the strong eddy field generated in the circumpolar current can interact with the bottom water formation process. The addition of an embayment, which insulates bottom water formation from meridional eddy fluxes, acts to stabilize the deep ocean density and enhances the sensitivity of the circumpolar current. The degree of interaction between Southern Ocean eddies and Antarctic shelf processes may thereby control the sensitivity of the Southern Ocean to change.


2017 ◽  
Vol 47 (3) ◽  
pp. 701-719 ◽  
Author(s):  
Christopher L. Wolfe ◽  
Paola Cessi ◽  
Bruce D. Cornuelle

AbstractAn intrinsic mode of self-sustained, interannual variability is identified in a coarse-resolution ocean model forced by an annually repeating atmospheric state. The variability has maximum loading in the Indian Ocean, with a significant projection into the South Atlantic Ocean. It is argued that this intrinsic mode is caused by baroclinic instability of the model’s Leeuwin Current, which radiates out to the tropical Indian and South Atlantic Oceans as long Rossby waves at a period of 4 yr. This previously undescribed mode has a remarkably narrowband time series. However, the variability is not synchronized with the annual cycle; the phase of the oscillation varies chaotically on decadal time scales. The presence of this internal mode reduces the predictability of the ocean circulation by obscuring the response to forcing or initial condition perturbations. The signature of this mode can be seen in higher-resolution global ocean models driven by high-frequency atmospheric forcing, but altimeter and assimilation analyses do not show obvious signatures of such a mode, perhaps because of insufficient duration.


2010 ◽  
Vol 7 (3) ◽  
pp. 4045-4088 ◽  
Author(s):  
J. B. Palter ◽  
J. L. Sarmiento ◽  
A. Gnanadesikan ◽  
J. Simeon ◽  
D. Slater

Abstract. In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be catastrophically reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global primary productivity between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, the high preformed nutrients subducted in the SAMW layer are converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.


2019 ◽  
Author(s):  
Akitomo Yamamoto ◽  
Ayako Abe-Ouchi ◽  
Rumi Ohgaito ◽  
Akinori Ito ◽  
Akira Oka

Abstract. Increased accumulation of respired carbon in the deep ocean associated with enhanced efficiency of the biological carbon pump is thought to be a key mechanism of glacial CO2 drawdown. Despite greater oxygen solubility due to sea surface cooling, recent quantitative and qualitative proxy data show glacial deep-water deoxygenation, reflecting increased accumulation of respired carbon. However, the mechanisms of deep-water deoxygenation and contribution from the biological pump to glacial CO2 drawdown have remained unclear. In this study, we report the significance of iron fertilization from glaciogenic dust for glacial CO2 decrease and deep-water deoxygenation using our numerical simulation, which successfully reproduces the magnitude and large-scale pattern of the observed oxygen changes from the present to Last Glacial Maximum. Sensitivity experiments reveal that physical changes (e.g., more sluggish ocean circulation) contribute to only half of all glacial deep deoxygenation, whereas the other half is driven by enhanced efficiency of the biological pump. We found that iron input from the glaciogenic dust with higher iron solubility is the most significant factor for enhancement of the biological pump and deep-water deoxygenation. Glacial deep-water deoxygenation expands the hypoxic waters in the deep Pacific and Indian Ocean. The simulated global volume of hypoxic waters is nearly double the present value, which suggest that the glacial deep-water is sever environment for the benthic animals. Our model underestimated the deoxygenation in the deep Southern Ocean due to enhanced ventilation. The model-proxy comparison of oxygen change suggest that the stratified Southern Ocean is required for reproducing oxygen decline in the deep Southern Ocean. Enhanced efficiency of biological pump contributes to decrease of glacial CO2 by more than 30 ppm, which is supported by the model-proxy agreement of oxygen change. Our findings confirm the significance of the biological pump in glacial CO2 drawdown and deoxygenation.


Sign in / Sign up

Export Citation Format

Share Document