scholarly journals A Model of Sea Ice Formation in Leads and Polynyas

2017 ◽  
Vol 47 (7) ◽  
pp. 1701-1718 ◽  
Author(s):  
Harold D. B. S. Heorton ◽  
Nikhil Radia ◽  
Daniel L. Feltham

AbstractCracks in the sea ice cover break the barrier between the ocean and atmosphere, exposing the ocean to the cold atmosphere during the winter. These cracks are known as leads within the continuous sea ice pack and polynyas near land or ice shelves. Sea ice formation starts with frazil ice crystals in supercooled waters, which grow and precipitate to the ocean surface to form grease ice, eventually consolidating into a layer of solid sea ice that grows downward. In this study, a numerical model is formulated to simulate the formation of sea ice in a lead or polynya from frazil ice to a layer of new sea ice. The simulations show the refreezing of a lead within 48 h of its opening. Grease ice covers the lead typically within 3–10 h and consolidates into sea ice within 15–30 h. This study uses its model to simulate an observed polynya event in the Laptev Sea showing the vertical distribution of frazil ice and water supercooling. Sensitivity studies are used to investigate the dependence of ice growth on the ambient environment with the surface wind speed shown to be of greatest importance to lead exposure time and total ice growth. The size and distribution of frazil crystals and the time taken for the lead to freeze over is shown to be highly dependent upon the ambient forcing and lead geometry.

2015 ◽  
Vol 56 (69) ◽  
pp. 295-306 ◽  
Author(s):  
Lars H. Smedsrud ◽  
Torge Martin

AbstractThe first stage of sea-ice formation is often grease ice, a mixture of sea water and frazil ice crystals. Over time, grease ice typically congeals first to pancake ice floes and then to a solid sea-ice cover. Grease ice is commonly not explicitly simulated in basin-scale sea-ice ocean models, though it affects oceanic heat loss and ice growth and is expected to play a greater role in a more seasonally ice-covered Arctic Ocean. We present an approach to simulate the grease-ice layer with, as basic properties, the surface being at the freezing point, a frazil ice volume fraction of 25%, and a negligible change in the surface heat flux compared to open water. The latter governs grease-ice production, and a gradual transition to solid sea ice follows, with ∼50% of the grease ice solidifying within 24 hours. The new parameterization delays lead closing by solid ice formation, enhances oceanic heat loss in fall and winter, and produces a grease-ice layer that is variable in space and time. Results indicate a 10-30% increase in mean winter Arctic Ocean heat loss compared to a standard simulation, with instant lead closing leading to significantly enhanced ice growth.


2015 ◽  
Vol 45 (4) ◽  
pp. 1121-1138 ◽  
Author(s):  
James R. Jordan ◽  
Satoshi Kimura ◽  
Paul R. Holland ◽  
Adrian Jenkins ◽  
Matthew D. Piggott

AbstractIt has been suggested that the presence of frazil ice can lead to a conditional instability in seawater. Any frazil forming in the water column reduces the bulk density of a parcel of frazil–seawater mixture, causing it to rise. As a result of the pressure decrease in the freezing point, this causes more frazil to form, causing the parcel to accelerate, and so on. This study uses linear stability analysis and a nonhydrostatic ocean model to study this instability. The authors find that frazil ice growth caused by the rising of supercooled water is indeed able to generate a buoyancy-driven instability. Even in a gravitationally stable water column, the frazil ice mechanism can still generate convection. The instability does not operate in the presence of strong density stratification, high thermal driving (warm water), a small initial perturbation, high background mixing, or the prevalence of large frazil ice crystals. In an unstable water column, the instability is not necessarily expressed in frazil ice at all times; an initial frazil perturbation may melt and refreeze. Given a large enough initial perturbation, this instability can allow significant ice growth. A model shows frazil ice growth in an Ice Shelf Water plume several kilometers from an ice shelf, under similar conditions to observations of frazil ice growth under sea ice. The presence of this instability could be a factor affecting the growth of sea ice near ice shelves, with implications for Antarctic Bottom Water formation.


2021 ◽  
Vol 15 (2) ◽  
pp. 951-982
Author(s):  
Ann Keen ◽  
Ed Blockley ◽  
David A. Bailey ◽  
Jens Boldingh Debernard ◽  
Mitchell Bushuk ◽  
...  

Abstract. We compare the mass budget of the Arctic sea ice for 15 models submitted to the latest Coupled Model Intercomparison Project (CMIP6), using new diagnostics that have not been available for previous model inter-comparisons. These diagnostics allow us to look beyond the standard metrics of ice cover and thickness to compare the processes of sea ice growth and loss in climate models in a more detailed way than has previously been possible. For the 1960–1989 multi-model mean, the dominant processes causing annual ice growth are basal growth and frazil ice formation, which both occur during the winter. The main processes by which ice is lost are basal melting, top melting and advection of ice out of the Arctic. The first two processes occur in summer, while the latter process is present all year. The sea ice budgets for individual models are strikingly similar overall in terms of the major processes causing ice growth and loss and in terms of the time of year during which each process is important. However, there are also some key differences between the models, and we have found a number of relationships between model formulation and components of the ice budget that hold for all or most of the CMIP6 models considered here. The relative amounts of frazil and basal ice formation vary between the models, and the amount of frazil ice formation is strongly dependent on the value chosen for the minimum frazil ice thickness. There are also differences in the relative amounts of top and basal melting, potentially dependent on how much shortwave radiation can penetrate through the sea ice into the ocean. For models with prognostic melt ponds, the choice of scheme may affect the amount of basal growth, basal melt and top melt, and the choice of thermodynamic scheme is important in determining the amount of basal growth and top melt. As the ice cover and mass decline during the 21st century, we see a shift in the timing of the top and basal melting in the multi-model mean, with more melt occurring earlier in the year and less melt later in the summer. The amount of basal growth reduces in the autumn, but it increases in the winter due to thinner sea ice over the course of the 21st century. Overall, extra ice loss in May–June and reduced ice growth in October–November are partially offset by reduced ice melt in August and increased ice growth in January–February. For the individual models, changes in the budget components vary considerably in terms of magnitude and timing of change. However, when the evolving budget terms are considered as a function of the changing ice state itself, behaviours common to all the models emerge, suggesting that the sea ice components of the models are fundamentally responding in a broadly consistent way to the warming climate. It is possible that this similarity in the model budgets may represent a lack of diversity in the model physics of the CMIP6 models considered here. The development of new observational datasets for validating the budget terms would help to clarify this.


1997 ◽  
Vol 43 (143) ◽  
pp. 138-151 ◽  
Author(s):  
M. O. Jeffries ◽  
K. Morris ◽  
W.F. Weeks ◽  
A. P. Worby

AbstractSixty-three ice cores were collected in the Bellingshausen and Amundsen Seas in August and September 1993 during a cruise of the R.V. Nathaniel B. Palmer. The structure and stable-isotopic composition (18O/16O) of the cores were investigated in order to understand the growth conditions and to identify the key growth processes, particularly the contribution of snow to sea-ice formation. The structure and isotopic composition of a set of 12 cores that was collected for the same purpose in the Bellingshausen Sea in March 1992 are reassessed. Frazil ice and congelation ice contribute 44% and 26%, respectively, to the composition of both the winter and summer ice-core sets, evidence that the relatively calm conditions that favour congelation-ice formation are neither as common nor as prolonged as the more turbulent conditions that favour frazil-ice growth and pancake-ice formation. Both frazil- and congelation-ice layers have an av erage thickness of 0.12 m in winter, evidence that congelation ice and pancake ice thicken primarily by dynamic processes. The thermodynamic development of the ice cover relies heavily on the formation of snow ice at the surface of floes after sea water has flooded the snow cover. Snow-ice layers have a mean thickness of 0.20 and 0.28 m in the winter and summer cores, respectively, and the contribution of snow ice to the winter (24%) and summer (16%) core sets exceeds most quantities that have been reported previously in other Antarctic pack-ice zones. The thickness and quantity of snow ice may be due to a combination of high snow-accumulation rates and snow loads, environmental conditions that favour a warm ice cover in which brine convection between the bottom and top of the ice introduces sea water to the snow/ice interface, and bottom melting losses being compensated by snow-ice formation. Layers of superimposed ice at the top of each of the summer cores make up 4.6% of the ice that was examined and they increase by a factor of 3 the quantity of snow entrained in the ice. The accumulation of superimposed ice is evidence that melting in the snow cover on Antarctic sea-ice floes ran reach an advanced stage and contribute a significant amount of snow to the total ice mass.


Author(s):  
Igor A. Dmitrenko ◽  
Carolyn Wegner ◽  
Heidemarie Kassens ◽  
Sergey A. Kirillov ◽  
Thomas Krumpen ◽  
...  

Ocean Science ◽  
2016 ◽  
Vol 12 (2) ◽  
pp. 507-515 ◽  
Author(s):  
Miles G. McPhee ◽  
Craig L. Stevens ◽  
Inga J. Smith ◽  
Natalie J. Robinson

Abstract. Late winter measurements of turbulent quantities in tidally modulated flow under land-fast sea ice near the Erebus Glacier Tongue, McMurdo Sound, Antarctica, identified processes that influence growth at the interface of an ice surface in contact with supercooled seawater. The data show that turbulent heat exchange at the ocean–ice boundary is characterized by the product of friction velocity and (negative) water temperature departure from freezing, analogous to similar results for moderate melting rates in seawater above freezing. Platelet ice growth appears to increase the hydraulic roughness (drag) of fast ice compared with undeformed fast ice without platelets. Platelet growth in supercooled water under thick ice appears to be rate-limited by turbulent heat transfer and that this is a significant factor to be considered in mass transfer at the underside of ice shelves and sea ice in the vicinity of ice shelves.


1994 ◽  
Vol 20 ◽  
pp. 195-201 ◽  
Author(s):  
Ian Allison ◽  
Anthony Worby

Data on Antarctic sea‐ice characteristics, and their spatial and temporal variability, are presented from cruises between 1986 and 1993 for the region spanning 60°−150° E between October and May. In spring, the sea‐ice zone is a variable mixture of different thicknesses of ice plus open water and in some regions only 30−40% of the area is covered with ice >0.3 m thick. The thin‐ice and open‐water areas are important for air‐sea heat exchange. Crystallographic analyses of ice cores, supported by salinity and stable‐isotope measurements, show that approximately 50% of the ice mass is composed of small frazil crystals. These are formed by rapid ice growth in leads and polynyas and indicate the presence of open water throughout the growth season. The area‐averaged thickness of undeformed ice west of 120° E is typically less than 0.3 m and tends to‐increase with distance south of the ice edge. Ice growth by congelation freezing rarely exceeds 0.4 m, with increases in ice thickness beyond this mostly attributable to rafting and ridging. While most of the total area is thin ice or open water, in the central pack much of the total ice mass is contained in ridges. Taking account of the extent of ridging, the total area‐averaged ice thickness is estimated to be about 1m for the region 60°−90° E and 2 m for the region 120°−150° E. By December, new ice formation has ceased in all areas of the pack and only floes >0.3 m remain. In most regions these melt completely over the summer and the new season's ice formation starts in late February. By March, the thin ice has reached a thickness of 0.15 0.30 m, with nilas formation being an important mechanism for ice growth within the ice edge


2012 ◽  
Vol 6 (4) ◽  
pp. 729-741 ◽  
Author(s):  
A. K. Naumann ◽  
D. Notz ◽  
L. Håvik ◽  
A. Sirevaag

Abstract. We investigate initial sea-ice growth in an ice-tank study by freezing an NaCl solution of about 29 g kg−1 in three different setups: grease ice grew in experiments with waves and in experiments with a current and wind, while nilas formed in a quiescent experimental setup. In this paper we focus on the differences in bulk salinity, solid fraction and thickness between these two ice types. The bulk salinity of the grease-ice layer in our experiments remained almost constant until the ice began to consolidate. In contrast, the initial bulk-salinity evolution of the nilas is well described by a linear decrease of about 2.1 g kg−1 h−1 independent of air temperature. This rapid decrease can be qualitatively understood by considering a Rayleigh number that became maximum while the nilas was still less than 1 cm thick. Comparing three different methods to measure solid fraction in grease ice based on (a) salt conservation, (b) mass conservation and (c) energy conservation, we find that the method based on salt conservation does not give reliable results if the salinity of the interstitial water is approximated as being equal to the salinity of the underlying water. Instead the increase in salinity of the interstitial water during grease-ice formation must be taken into account. In our experiments, the solid fraction of grease ice was relatively constant with values of 0.25, whereas it increased to values as high as 0.50 as soon as the grease ice consolidated at its surface. In contrast, the solid fraction of the nilas increased continuously in the first hours of ice formation and reached an average value of 0.55 after 4.5 h. The spatially averaged ice thickness was twice as large in the first 24 h of ice formation in the setup with a current and wind compared to the other two setups, since the wind kept parts of the water surface ice free and therefore allowed for a higher heat loss from the water. The development of the ice thickness can be reproduced well with simple, one dimensional models that only require air temperature or ice surface temperature as input.


2014 ◽  
Vol 44 (7) ◽  
pp. 1751-1775 ◽  
Author(s):  
Trevor J. McDougall ◽  
Paul M. Barker ◽  
Rainer Feistel ◽  
Ben K. Galton-Fenzi

Abstract The thermodynamic consequences of the melting of ice and sea ice into seawater are considered. The International Thermodynamic Equation Of Seawater—2010 (TEOS-10) is used to derive the changes in the Conservative Temperature and Absolute Salinity of seawater that occurs as a consequence of the melting of ice and sea ice into seawater. Also, a study of the thermodynamic relationships involved in the formation of frazil ice enables the calculation of the magnitudes of the Conservative Temperature and Absolute Salinity changes with pressure when frazil ice is present in a seawater parcel, assuming that the frazil ice crystals are sufficiently small that their relative vertical velocity can be ignored. The main results of this paper are the equations that describe the changes to these quantities when ice and seawater interact, and these equations can be evaluated using computer software that the authors have developed and is publicly available in the Gibbs SeaWater (GSW) Oceanographic Toolbox of TEOS-10.


2020 ◽  
Author(s):  
Stefan Jendersie ◽  
Alena Malyarenko

<p>To quantify Antarctic ice mass loss and the subsequent sea level rise the geophysical modelling community is pushing towards frameworks that fully couple increasingly complex models of atmosphere, ocean, sea ice and ice sheets & shelves.  One particular hurdle remains the accurate representation of the vertical ocean-ice interaction at the base of ice shelves.  Parameterizations that are tuned to particular data sets naturally perform best in comparable ice shelf cavity environments. This poses the challenge in continental scale ocean-ice shelf models to chose one melt parameterizaton that performs sufficiently well in diverse cavity environment.  Thus adding uncertainty in ice shelf induced ocean freshening crucially affects modelled sea ice growth.  The impact magnitude of ice shelf supplied melt water on growth rates, thickness and extent of sea ice in the open ocean is currently debated in the literature.  <br>We reviewed and compared 16 commonly utilized melting/freezing parameterizations in coupled ocean-ice shelf models.  Melt rates differ hugely, in identical idealized conditions between 0.1m/yr to 3m/yr.  In this talk we present results of a realistic circum-Antarctic ice shelf and sea ice coupled ocean model (CICE, ROMS), where we look at the effects of the chosen ice shelf melt parameterization on modeled sea surface conditions and sea ice growth, regionally and circum Antarctic.</p>


Sign in / Sign up

Export Citation Format

Share Document